Towards Industry 5.0: AAS/MLOps-Driven Model Maintenance for Data-Centric Production
Kiavash Fathi, Kiavash Fathi, Marcin Sadurski, Stefan Waskow, Tobias Kleinert, Hans Wernher van de Venn
2025
Abstract
Despite the advancements brought by digitalization across industries, only a few state-of-the-art data-driven methods successfully transition to production and remain viable. The sheer volume of physical assets in production lines, combined with constantly evolving requirements, makes model deployment and maintenance highly complex. This paper presents a production-ready architecture developed for data-driven digital assets at ABB Schaffhausen AG. The solution integrates MLOps best practices orchestrated via MLRun with the industry-standard metadata modeling system, Asset Administration Shell (AAS). We demonstrate how controlled artifact generation from MLRun facilitates experiment tracking and knowledge sharing while AAS ensures standardization and long-term maintenance. By combining MLOps and AAS, we effectively manage the ever-growing artifacts of data-driven solutions. Additionally, we explore how controlled artifact generation enables role-based MLOps by restricting access to relevant information based on industrial roles. This architecture supports a smooth transition to Industry 5.0.
DownloadPaper Citation
in Harvard Style
Fathi K., Sadurski M., Waskow S., Kleinert T. and van de Venn H. (2025). Towards Industry 5.0: AAS/MLOps-Driven Model Maintenance for Data-Centric Production. In Proceedings of the 22nd International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO; ISBN 978-989-758-770-2, SciTePress, pages 495-502. DOI: 10.5220/0013716300003982
in Bibtex Style
@conference{icinco25,
author={Kiavash Fathi and Marcin Sadurski and Stefan Waskow and Tobias Kleinert and Hans van de Venn},
title={Towards Industry 5.0: AAS/MLOps-Driven Model Maintenance for Data-Centric Production},
booktitle={Proceedings of the 22nd International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO},
year={2025},
pages={495-502},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0013716300003982},
isbn={978-989-758-770-2},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 22nd International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO
TI - Towards Industry 5.0: AAS/MLOps-Driven Model Maintenance for Data-Centric Production
SN - 978-989-758-770-2
AU - Fathi K.
AU - Sadurski M.
AU - Waskow S.
AU - Kleinert T.
AU - van de Venn H.
PY - 2025
SP - 495
EP - 502
DO - 10.5220/0013716300003982
PB - SciTePress