
REFERENCES
Brettel, M., Klein, M., and Friederichsen, N. (2016). The
relevance of manufacturing flexibility in the context of
industrie 4.0. Procedia Cirp, 41:105–110.
Cerquitelli, T., Nikolakis, N., Morra, L., Bellagarda, A.,
Orlando, M., Salokangas, R., Saarela, O., Hietala, J.,
Kaarmila, P., and Macii, E. (2021). Data-driven pre-
dictive maintenance: A methodology primer. Predic-
tive Maintenance in Smart Factories: Architectures,
Methodologies, and Use-cases, pages 39–73.
Colombi, L., Gilli, A., Dahdal, S., Boleac, I., Tortonesi,
M., Stefanelli, C., and Vignoli, M. (2024). A ma-
chine learning operations platform for streamlined
model serving in industry 5.0. In NOMS 2024-2024
IEEE Network Operations and Management Sympo-
sium, pages 1–6. IEEE.
Dorigo, T., Brown, G. D., Casonato, C., Cerd
`
a, A., Cia-
rrochi, J., Da Lio, M., D’souza, N., Gauger, N. R.,
Hayes, S. C., Hofmann, S. G., et al. (2025). Artifi-
cial intelligence in science and society: The vision of
usern. IEEe Access.
Fathi, K., Kleinert, T., and van de Venn, H. W. (2024a).
Trustworthy machine learning operations for predic-
tive maintenance solutions. In PHM Society European
Conference, volume 8, pages 4–4.
Fathi, K., Ristin, M., Sadurski, M., Kleinert, T., and van de
Venn, H. W. (2024b). Detection of novel asset failures
in predictive maintenance using classifier certainty. In
2024 32nd Mediterranean Conference on Control and
Automation (MED), pages 50–56. IEEE.
Faubel, L., Schmid, K., and Eichelberger, H. (2023). Mlops
challenges in industry 4.0. SN Computer Science,
4(6):828.
Ghobakhloo, M. (2020). Industry 4.0, digitization, and op-
portunities for sustainability. Journal of cleaner pro-
duction, 252:119869.
Haviv, Y. and Gift, N. (2023). Implementing MLOps in the
Enterprise. ” O’Reilly Media, Inc.”.
Huang, Y., Dhouib, S., and Malenfant, J. (2021). Aas
capability-based operation and engineering of flexible
production lines. In 2021 26th IEEE International
Conference on Emerging Technologies and Factory
Automation (ETFA), pages 01–04. IEEE.
ISACA (2024). Understanding the eu ai act: Requirements
and next steps. Accessed: 2025-02-06.
Kozma, D., Varga, P., and Larrinaga, F. (2019). Data-
driven workflow management by utilising bpmn and
cpn in iiot systems with the arrowhead framework. In
2019 24th IEEE International Conference on Emerg-
ing Technologies and Factory Automation (ETFA),
pages 385–392. IEEE.
Kreuzberger, D., K
¨
uhl, N., and Hirschl, S. (2023). Ma-
chine learning operations (mlops): Overview, defini-
tion, and architecture. IEEE access, 11:31866–31879.
Milicic, A., Kiritsis, D., and Efendioglu, N. (2016). From
english to rdf-a meta-modelling approach for predic-
tive maintenance knowledge base design. In Advances
in Production Management Systems. Initiatives for a
Sustainable World: IFIP WG 5.7 International Con-
ference, APMS 2016, Iguassu Falls, Brazil, September
3-7, 2016, Revised Selected Papers, pages 214–224.
Springer.
Morgan, J., Halton, M., Qiao, Y., and Breslin, J. G. (2021).
Industry 4.0 smart reconfigurable manufacturing ma-
chines. Journal of Manufacturing Systems, 59:481–
506.
M
¨
uller, M., M
¨
uller, T., Ashtari Talkhestani, B., Marks,
P., Jazdi, N., and Weyrich, M. (2021a). Industrial
autonomous systems: a survey on definitions, char-
acteristics and abilities. at-Automatisierungstechnik,
69(1):3–13.
M
¨
uller, T., Jazdi, N., Schmidt, J.-P., and Weyrich, M.
(2021b). Cyber-physical production systems: en-
hancement with a self-organized reconfiguration man-
agement. Procedia CIRP, 99:549–554.
M
¨
uller, T., Lindemann, B., Jung, T., Jazdi, N., and Weyrich,
M. (2021c). Enhancing an intelligent digital twin
with a self-organized reconfiguration management
based on adaptive process models. Procedia CIRP,
104:786–791.
Oluyisola, O. E., Sgarbossa, F., and Strandhagen, J. O.
(2020). Smart production planning and control: Con-
cept, use-cases and sustainability implications. Sus-
tainability, 12(9):3791.
Polke, D., Surjana, A., Diepers, F., Ahle, E., and S
¨
offker,
D. (2023). Development of a modular automation
framework for data-driven modeling and optimization
of coating formulations. In 2023 IEEE 28th Interna-
tional Conference on Emerging Technologies and Fac-
tory Automation (ETFA), pages 1–8. IEEE.
Psarommatis, F. and May, G. (2024). Digital product pass-
port: A pathway to circularity and sustainability in
modern manufacturing. Sustainability, 16(1):396.
Raj, E., Buffoni, D., Westerlund, M., and Ahola, K. (2021).
Edge mlops: An automation framework for aiot ap-
plications. In 2021 IEEE International Conference on
Cloud Engineering (IC2E), pages 191–200. IEEE.
Ruppert, T., L
¨
ocklin, A., Romero, D., and Abonyi, J.
(2022). Intelligent collaborative manufacturing space
for augmenting human workers in semi-automated
manufacturing systems. In 2022 IEEE 27th Interna-
tional Conference on Emerging Technologies and Fac-
tory Automation (ETFA), pages 1–7. IEEE.
Sabuncu,
¨
O. and Bilgehan, B. (2025). Human-centric iot-
driven digital twins in predictive maintenance for op-
timizing industry 5.0. Journal of Metaverse, 5(1):64–
72.
Salama, K., Kazmierczak, J., and Schut, D. (2021). Prac-
titioners guide to mlops: A framework for continuous
delivery and automation of machine learning. Google
Could White paper.
Shakhovska, N. and Campos, J. (2024). Predictive mainte-
nance for wind turbine bearings: An mlops approach
with the diafs machine learning model.
Wei, K., Sun, J. Z., and Liu, R. J. (2019). A review of as-
set administration shell. In 2019 IEEE International
Conference on Industrial Engineering and Engineer-
ing Management (IEEM), pages 1460–1465.
Towards Industry 5.0: AAS/MLOps-Driven Model Maintenance for Data-Centric Production
501