Categorical Model Estimation with Feature Selection Using an Ant Colony Optimization

Tetiana Reznychenko, Evženie Uglickich, Ivan Nagy, Ivan Nagy

2025

Abstract

This paper deals with the analysis of high-dimensional discrete data values from questionnaires, with the aim of identifying explanatory variables that influence a target variable. We propose a hybrid algorithm that combines categorical model estimation with an ant colony optimization scheme for feature selection. The main contributions are: (i) the efficient selection of the most significant explanatory variables, and (ii) the estimation of a categorical model with reduced dimensionality. Experimental results and comparisons with well-known algorithms (e.g., random forest, categorical boosting, k-nearest neighbors) and feature selection techniques are presented.

Download


Paper Citation


in Harvard Style

Reznychenko T., Uglickich E. and Nagy I. (2025). Categorical Model Estimation with Feature Selection Using an Ant Colony Optimization. In Proceedings of the 22nd International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO; ISBN 978-989-758-770-2, SciTePress, pages 219-226. DOI: 10.5220/0013705300003982


in Bibtex Style

@conference{icinco25,
author={Tetiana Reznychenko and Evženie Uglickich and Ivan Nagy},
title={Categorical Model Estimation with Feature Selection Using an Ant Colony Optimization},
booktitle={Proceedings of the 22nd International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO},
year={2025},
pages={219-226},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0013705300003982},
isbn={978-989-758-770-2},
}


in EndNote Style

TY - CONF

JO - Proceedings of the 22nd International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO
TI - Categorical Model Estimation with Feature Selection Using an Ant Colony Optimization
SN - 978-989-758-770-2
AU - Reznychenko T.
AU - Uglickich E.
AU - Nagy I.
PY - 2025
SP - 219
EP - 226
DO - 10.5220/0013705300003982
PB - SciTePress