
Bergsma, W. and Lupparelli, M. (2025). Editorial for spe-
cial issue on categorical data analysis. Metrika, pages
1–3.
Berthold, M. R., Wiswedel, B., and Gabriel, T. R. (2013).
Fuzzy logic in knime – modules for approximate rea-
soning. International Journal of Computational Intel-
ligence Systems, 6(1):34–45.
Biau, G. and Scornet, E. (2016). A random forest guided
tour. Test, 25(2):197–227.
Blum, C. (2005). Ant colony optimization: Introduction and
recent trends. Physics of Life Reviews, 2(4):353–373.
Bouguila, N. and Elguebaly, W. (2009). Discrete data clus-
tering using finite mixture models. Pattern Recogni-
tion, 42(1):33–42.
Congdon, P. (2005). Bayesian Models for Categorical Data.
John Wiley Sons.
D. Zwahlen, C. J. and Pf
¨
affli, M. (2016). Sleepiness, driv-
ing, and motor vehicle accidents: a questionnaire-
based survey. Journal of Forensic and Legal Medicine,
44:183–187.
Dell’Olio, L., Ibeas, A., de O
˜
na, J., and de O
˜
na, R.
(2017). Public transportation quality of service: Fac-
tors, models, and applications. Elsevier.
Falissard, B. (2012). Analysis of Questionnaire Data with
R. Chapman & Hall/CRC, Boca Raton.
Fidanova, S. (2021). Ant colony optimization. In Ant
Colony Optimization and Applications, pages 3–8.
Springer International Publishing, Cham.
Forsyth, D. (2019). Applied Machine Learning. Springer.
F
¨
oldes, D., Csisz
´
ar, C., and Zarkeshev, A. (2018). User
expectations towards mobility services based on au-
tonomous vehicle. In 8th International Scientific Con-
ference CMDTUR, pages 7–14.
Genuer, R., Poggi, J. M., and Tuleau-Malot, C. (2010).
Variable selection using random forests. Pattern
Recognition Letters, 31(14):2225–2236.
Goodman, L. A. and Kruskal, W. H. (1963). Measures of
association for cross classifications iii: approximate
sampling theory. Journal of the American Statistical
Association, 58(302):310–364.
Hancock, J. T. and Khoshgoftaar, T. M. (2020). Catboost
for big data: an interdisciplinary review. Journal of
Big Data, 7(1):94.
Hjellbrekke, J. (2018). Multiple Correspondence Analysis
for the Social Sciences. Routledge.
Hosmer, D. W. and Lemeshow, S. (2000). Applied Logistic
Regression. Wiley-Interscience, 2nd edition.
Hu, Y., Li, Y., Huang, H., Lee, J., Yuan, C., and Zou,
G. (2022). A high-resolution trajectory data driven
method for real-time evaluation of traffic safety. Acci-
dent Analysis & Prevention, 165:106503.
Jozova, S., M. Matowicki, O. Pribyl, M. Z. S. O., and Zi-
olkowski, R. (2021). On the analysis of discrete data
finding dependencies in small sample sizes. Neural
Network World, 31(5):311.
Kaggle (2019). Online food delivery
preferences-bangalore region. Available:
https://www.kaggle.com/datasets/benroshan/online-
food-delivery-preferencesbangalore-region.
K
´
arn
´
y, M. (2016). Recursive estimation of high-order
markov chains: Approximation by finite mixtures. In-
formation Sciences, 326:188–201.
Li, Y., Schofield, E., and G
¨
onen, M. (2019). A tutorial on
dirichlet process mixture modeling. Journal of Math-
ematical Psychology, 91:128–144.
Lovatti, B. P., Nascimento, M. H., Neto,
´
A. C., Cas-
tro, E. V., and Filgueiras, P. R. (2019). Use of random
forest in the identification of important variables. Mi-
crochemical Journal, 145:1129–1134.
Matowicki, M., Pribyl, O., and Pecherkova, P. (2021). Car-
sharing in the czech republic: Understanding why
users chose this mode of travel for different purposes.
Case Studies on Transport Policy, 9(2):842–850.
Pereira, R. B., Plastino, A., Zadrozny, B., and Merschmann,
L. H. (2018). Categorizing feature selection methods
for multi-label classification. Artificial Intelligence
Review, 49:57–78.
Phuong, N. T., Hoang, P. V., Dang, T. M., Huyen, T. N. T.,
and Thi, T. N. (2023). Improving hospital’s quality
of service in vietnam: the patient satisfaction eval-
uation in multiple health facilities. Hospital Topics,
101(2):73–83.
Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush,
A. V., and Gulin, A. (2018). Catboost: unbiased boost-
ing with categorical features. In Advances in Neural
Information Processing Systems, volume 31.
Ray, P., Reddy, S. S., and Banerjee, T. (2021). Various
dimension reduction techniques for high dimensional
data analysis: a review. Artificial Intelligence Review,
54(5):3473–3515.
Reeves, C. R. (2010). Genetic algorithms, pages 109–139.
Roux, B. L. and Rouanet, H. (2010). Multiple Correspon-
dence Analysis, volume 163. Sage.
Stokes, M. E., Davis, C. S., and Koch, G. G. (2012). Cate-
gorical Data Analysis Using SAS. SAS Institute, 3rd
edition.
Suykens, J. A., Signoretto, M., and Argyriou, A. (2014).
Regularization, Optimization, Kernels, and Support
Vector Machines. CRC Press.
Tang, W., He, H., and Tu, X. M. (2012). Applied Cat-
egorical and Count Data Analysis. Chapman and
Hall/CRC.
Wade, C. and Glynn, K. (2020). Hands-On Gradient Boost-
ing with XGBoost and scikit-learn: Perform accessi-
ble machine learning and extreme gradient boosting
with Python. Packt Publishing Ltd.
Wang, W., Wang, Y., Wang, G., Li, M., and Jia, L. (2023).
Identification of the critical accident causative factors
in the urban rail transit system by complex network
theory. Physica A: Statistical Mechanics and its Ap-
plications, 610:128404.
Zhang, S. and Li, J. (2021). Knn classification with one-
step computation. IEEE Transactions on Knowledge
and Data Engineering, 35(3):2711–2723.
ICINCO 2025 - 22nd International Conference on Informatics in Control, Automation and Robotics
226