Semantic Approach for Prospectivity Analysis of Mineral Deposits

Sławomir Wójcik, Taha Osman, Peter Zawada

2016

Abstract

Early mineral exploration activities motivates innovative research into cost-effective methods for automating the process of mineral deposits’ prospectivity analysis. At the heart that process is the development of a knowledge base that is not only capable of consuming geodata originating from multiple sources with different representation format and data veracity, but also provides for the reasoning capabilities required by the prospectivity analysis. In this paper, we present an integrative semantic-driven approach that reconciles the representation format of sourced geodata using a unifying metadata model, and encodes the prospectivity analysis of geological knowledge both at the schemata modelling level and through more explicit reasoning rules operating on the semantically tagged geodata. The paper provides valuable insights into the challenges of representation, inference, and query of geospatially-tagged geological data and analyses our initial results into the prospectivity analysis of mineral deposits.

References

  1. Bereta, K., Nikolaou, C., Karpathiotakis, M., Kyzirakos, K. and Koubarakis, M., 2013. SexTant: Visualizing Time-Evolving Linked Geospatial Data. In: International Semantic Web Conference (Posters & Demos), pp. 177-180.
  2. CGI Geoscience Concept Definitions Task Group, OWL Ontology for Lithology [online]. . Available at: https://www.seegrid.csiro.au/wiki/CGIModel/Concept DefinitionsTG#OWL_Ontology_for_Lithology [Accessed 12,09 2015].
  3. Geosoft, 2015. ArcGIS Extensions, Mapping Software for ArcGIS [online]. Available at: http://www.geosoft. com/products/arcgis-extensions/overview [Accessed 12/09 2015].
  4. IGS, 2015. International Geoscience Services (IGS) Ltd [online]. Available at: http://www.igsint.com/ [Accessed 12/09 2015].
  5. Janowicz, K., Schade, S., Bröring, A., Keßler, C., Maué, P. and Stasch, C., 2010. Semantic Enablement for Spatial Data Infrastructures. Transactions in GIS, 14 (2), 111-129.
  6. Kyzirakos, K., Karpathiotakis, M., Bereta, K., Garbis, G., Nikolaou, C., Smeros, P., Giannakopoulou, S., Dogani, K. and Koubarakis, M., 2013. The spatiotemporal RDF store strabon. In: The spatiotemporal RDF store strabon. Advances in Spatial and Temporal Databases. Springer, 2013, pp. 496- 500.
  7. Law, M., and Collins, A., 2013. Getting to know ArcGIS for desktop. Esri Press.
  8. Lusty, P., Gunn, A., McDonnell, P., Chacksfield, B., Cooper, M. and Earls, G., 2009. Gold potential of the Dalradian rocks of north-west Northern Ireland: prospectivity analysis using Tellus data. Applied Earth Science: Transactions of the Institutions of Mining and Metallurgy: Section B, 118 (3-4), 162-177.
  9. Maptek, 2015. Mine Planning Solutions [online]. . Available at: http://www.maptek.com/solutions/ mine_planning.html [Accessed 12/09 2015].
  10. Noack, S., Barth, A., Irkhin, A., Bennewitz, E. and Schmidt, F., 2012. Spatial modeling of natural phenomena and events with Artificial Neural Networks and GIS. International Journal of Applied Geospatial Research (IJAGR), 3 (1), 1-20.
  11. Osman, T., Rmaswamy, S., Mahmoud, S. and Saeed, M., 2013. Utilising semantic technologies for decision support in dementia care. In: Computer Modelling and Simulation (UKSim), 2013 UKSim 15th International Conference on, IEEE, pp. 628-633.
  12. QGIS, 2015. Open Source Geographic Information System [online]. . Available at: http://www.qgis.org/ [Accessed 12/09 2015].
  13. Sen, M., and Duffy, T., 2005. GeoSciML: development of a generic geoscience markup language. Computers & Geosciences, 31 (9), 1095-1103.
  14. SNL, 2015. Expert Mining Research [online]. . Available at: http://www.snl.com/Sectors/MetalsMining/ExpertMini ngResearch.aspx [Accessed 12/09 2105].
  15. Tian, Y., and Huang, M., 2012. Enhance discovery and retrieval of geospatial data using SOA and Semantic Web technologies. Expert Systems with Applications; Expert Syst.Appl., 39 (16), 12522-12535.
  16. Zhang, C.R., Zhao, T. and Li, W., 2010. The framework of a geospatial semantic web-based spatial decision support system for Digital Earth. International Journal of Digital Earth; Int.J.Digit.Earth, 3 (2), 111-134.
Download


Paper Citation


in Harvard Style

Wójcik S., Osman T. and Zawada P. (2016). Semantic Approach for Prospectivity Analysis of Mineral Deposits . In Proceedings of the 2nd International Conference on Geographical Information Systems Theory, Applications and Management - Volume 1: GISTAM, ISBN 978-989-758-188-5, pages 180-189. DOI: 10.5220/0005871001800189


in Bibtex Style

@conference{gistam16,
author={Sławomir Wójcik and Taha Osman and Peter Zawada},
title={Semantic Approach for Prospectivity Analysis of Mineral Deposits},
booktitle={Proceedings of the 2nd International Conference on Geographical Information Systems Theory, Applications and Management - Volume 1: GISTAM,},
year={2016},
pages={180-189},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005871001800189},
isbn={978-989-758-188-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 2nd International Conference on Geographical Information Systems Theory, Applications and Management - Volume 1: GISTAM,
TI - Semantic Approach for Prospectivity Analysis of Mineral Deposits
SN - 978-989-758-188-5
AU - Wójcik S.
AU - Osman T.
AU - Zawada P.
PY - 2016
SP - 180
EP - 189
DO - 10.5220/0005871001800189