Improvement of Phase Unwrapping Algorithms by Epipolar Constraints

Johannes Köhler, Jan C. Peters, Tobias Nöll, Didier Stricker

2015

Abstract

Phase unwrapping remains a challenging problem in the context of fast 3D reconstruction based on structured light, in particular for objects with complex geometry. In this paper we suggest to support phase unwrapping algorithms by additional constraints induced by the scanning setup. This is possible when at least two cameras are used, a likely case in practice. The constraints are generalized for two or more cameras by introducing the concept of a candidate map. We claim that this greatly reduces the complexity for any subsequent unwrapping algorithm, their performance is thereby strongly increased. We demonstrate this by exemplarily integrating the candidate map into a local path following and a global minimum norm unwrapping method.

References

  1. Abdul-Rahman, H., Gdeisat, M., Burton, D., Lalor, M., Lilley, F., and Moore, C. (2007). Fast and Robust ThreeDimensional Best Path Phase Unwrapping Algorithm. Applied Optics, 46(26):6623-6635.
  2. Bergmann, D. (1995). New approach for automatic surface reconstruction with coded light. volume 2572.
  3. Bioucas-Dias, J. M. and Valado, G. (2007). Phase unwrapping via graph cuts. IEEE Transactions on Image Processing, 16(3):698-709.
  4. Boykov, Y., Veksler, O., and Zabih, R. (2001). Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell., 23(11):1222-1239.
  5. Bräuer-Burchardt, C., Kühmstedt, P., and Notni, G. (2013). Phase unwrapping using geometric constraints for high-speed fringe projection based 3d measurements. volume 8789.
  6. Bräuer-Burchardt, C., Munkelt, C., Heinze, M., Kühmstedt, P., and Notni, G. (2008). Phase unwrapping in fringe projection systems using epipolar geometry. In BlancTalon, J., Bourennane, S., Philips, W., Popescu, D., and Scheunders, P., editors, Advanced Concepts for Intelligent Vision Systems, number 5259 in Lecture Notes in Computer Science, pages 422-432. Springer Berlin Heidelberg.
  7. Bräuer-Burchardt, C., Munkelt, C., Heinze, M., Kühmstedt, P., and Notni, G. (2011). Using geometric constraints to solve the point correspondence problem in fringe projection based 3d measuring systems. In Maino, G. and Foresti, G., editors, Image Analysis and Processing ICIAP 2011, volume 6979 of Lecture Notes in Computer Science, pages 265-274. Springer Berlin Heidelberg.
  8. Costantini, M. (1998). A novel phase unwrapping method based on network programming. Geoscience and Remote Sensing, IEEE Transactions on, 36(3):813-821.
  9. Dias, J. M. B. and Leito, J. M. N. (2002). The zm algorithm: a method for interferometric image reconstruction in sar/sas. IEEE Transactions on Image Processing, 11(4):408-422.
  10. Garcia, R. and Zakhor, A. (2012). Consistent stereo-assisted absolute phase unwrapping methods for structured light systems. Selected Topics in Signal Processing, IEEE Journal of, 6(5):411-424.
  11. Ghiglia, D. C. and Romero, L. A. (1996). Minimum Lpnorm two-dimensional phase unwrapping. J. Opt. Soc. Am. A, 13(10):1999-2013.
  12. Goldstein, R. M., Zebker, H. A., and Werner, C. L. (1988). Satellite radar interferometry: Two-dimensional phase unwrapping. Radio Science, 23(4):713-720.
  13. Gorthi, S. S. and Rastogi, P. (2010). Fringe projection techniques: whither we are? Optics and Lasers in Engineering, 48:133-140.
  14. Guo, H., He, H., and Chen, M. (2004). Gamma correction for digital fringe projection profilometry. Appl. Opt., 43(14):2906-2914.
  15. Guo, H., Zhao, Z., and Chen, M. (2007). Efficient iterative algorithm for phase-shifting interferometry. Optics and Lasers in Engineering, 45(2):281-292.
  16. Han, X. and Huang, P. (2009). Combined stereovision and phase shifting method: a new approach for 3d shape measurement. volume 7389, pages 73893C-73893C8.
  17. Hartley, R. I. and Zisserman, A. (2004). Multiple View Geometry in Computer Vision. Cambridge University Press, ISBN: 0521540518, second edition.
  18. Herráez, M. A., Burton, D. R., Lalor, M. J., and Gdeisat, M. A. (2002). Fast two-dimensional phaseunwrapping algorithm based on sorting by reliability following a noncontinuous path. Applied Optics, 41(35):7437-7444.
  19. Kolmogorov, V. and Zabin, R. (2004). What energy functions can be minimized via graph cuts? Pattern Analysis and Machine Intelligence, IEEE Transactions on, 26(2):147-159.
  20. Loffeld, O., Nies, H., Knedlik, S., and Wang, Y. (2008). Phase unwrapping for sar interferometry - a data fusion approach by kalman filtering. IEEE T. Geoscience and Remote Sensing, 46(1):47-58.
  21. Martinez-Espla, J. J., Martnez-Marn, T., and LopezSanchez, J. M. (2009). A particle filter approach for insar phase filtering and unwrapping. IEEE T. Geoscience and Remote Sensing, 47(4):1197-1211.
  22. Peng, T. and Gupta, S. K. (2008). Algorithms for generating adaptive projection patterns for 3d shape measurement. Journal of Computing and Information Science in Engineering, 8(3):031009.
  23. Schlesinger, D. and Flach, B. (2006). Transforming an arbitrary minsum problem into a binary one. Technical Report TUD-FI06-01, Technische Universität Dresden.
  24. Wang, Z., Nguyen, D. A., and Barnes, J. C. (2010). Some practical considerations in fringe projection profilometry. Optics and Lasers in Engineering, 48(2):218 - 225. Fringe Projection Techniques.
  25. Xu, W. and Cumming, I. (1999). A region-growing algorithm for InSAR phase unwrapping. IEEE Transactions on Geoscience and Remote Sensing, 37(1):124- 134.
Download


Paper Citation


in Harvard Style

Köhler J., Peters J., Nöll T. and Stricker D. (2015). Improvement of Phase Unwrapping Algorithms by Epipolar Constraints . In Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2015) ISBN 978-989-758-091-8, pages 472-479. DOI: 10.5220/0005271404720479


in Bibtex Style

@conference{visapp15,
author={Johannes Köhler and Jan C. Peters and Tobias Nöll and Didier Stricker},
title={Improvement of Phase Unwrapping Algorithms by Epipolar Constraints},
booktitle={Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2015)},
year={2015},
pages={472-479},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005271404720479},
isbn={978-989-758-091-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2015)
TI - Improvement of Phase Unwrapping Algorithms by Epipolar Constraints
SN - 978-989-758-091-8
AU - Köhler J.
AU - Peters J.
AU - Nöll T.
AU - Stricker D.
PY - 2015
SP - 472
EP - 479
DO - 10.5220/0005271404720479