Daniela Xhemali, Christopher J. Hinde, Roger G. Stone



This paper presents an adaptable genetic evolutionary system, which includes an innovative approach to mapping genotypes to phenotypes through XML rules. The evolutionary system was originally created to evolve Regular Expressions (REs) to automate the extraction of web information. However, the system has been adapted to work with a completely different domain – Complete Software Programs – to demonstrate the flexibility of this approach. Specifically, the paper concentrates on the evolution of ‘Sorting’ programs. Experiments show that our evolutionary system is successful and can be adapted to work for challenging domains with minimum effort.


  1. Aho, A. V. & Ullman, J. D. 1979. Principles of Compiler Design. Addison Wesley, ISBN 0-201-00022-9.
  2. Atkinson-Abutridy, J., Mellish, C., Aitken, S. 2004. Combining information extraction with genetic algorithms for text mining. IEEE Intelligent Systems. 19(3), pp. 22-30.
  3. Banzhaf, W. 1994. Genotype-Phenotype-Mapping and Neutral Variation - A case study in Genetic Programming. Proceedings of the International Conference on Evolutionary Computation. SpringerVerlag, pp.322-332.
  4. Banzhaf, W. 2006. genotype-phenotype-mapping and neutral variation - A case study in Genetic Programming. Lecture Notes in Computer Science, Springer Berlin, 866, pp. 322-332.
  5. Barrero, D., Camacho, D. & R-Moreno, M. 2009. Automatic Web Data Extraction Based on Genetic Algorithms and Regular Expressions. Data Mining and Multi-agent Integration. Springer-Verlag, pp. 143.
  6. Clarke, M., Hinde, C. J., Withall, M. S., Jackson, T. W., Philips, I. W., Brown, S. & Watson, R. 2009. Allocating Railway Platforms using a Genetic Algorithm. Research and Development in Intelligent Systems XXVI. Springer London, pp. 421-434.
  7. Conrad, E. 2007. Detecting Spam with Genetic Regular Expressions. SANS Institute Reading Room. Available: GCIA/00793.php.
  8. Dyer, J. & Bentley, P. 2002. PLANTWORLD: Population Dynamics in Contrasting Environments. In Cantu-Paz E., GECCO, pp. 122-129.
  9. Grosan, C. & Abraham, A. 2008. Evolving Computer Programs for Knowledge Discovery. Social Science Research Network (SSRN).
  10. Hsu, P-H. 2007. Feature extraction of hyperspectral images using wavelet and matching pursuit. ISPRS Journal of Photogrammetry and Remote Sensing. Elsevier Science, Amsterdam, 62 (2), pp. 78-92.
  11. Jackson, D. 2005. Evolving Defence Strategies by Genetic Programming. In Lecture Notes in Computer Science. Springer Berlin, 3447, 281-290.
  12. Keaveney, D. & O'Riordan, C. 2009. Evolving Robust Strategies for an Abstract Real-time Strategy Game. Proceedings of the 5th International Conference on Computational Intelligence and Games. pp. 371-378.
  13. Keller, R. E. & Banzhaf, W. 1996. Genetic Programming using Genotype-Phenotype Mapping from Linear Genomes into Linear Phenotypes. Proceedings of the First Annual Conference on Genetic Programming, California. pp. 116-122.
  14. Klank, U., Padoy, N., Feussner, H. and Navab, N. 2008. Automatic feature generation in endoscopic images. International Journal of Computer Assisted Radiology and Surgery. Springer, 3, pp. 331-339.
  15. Koza, J. R. 1992. Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press.
  16. Langdon, W., Poli, R., McPhee, N. & Koza, J. R. 2008. Genetic Programming: An Introduction and Tutorial with a Survey of Techniques and Applications. In Studies in Computational Intelligence. Springer, Berlin, 115, pp. 927-1028.
  17. Moore, J. P. 2000. Exploring and Exploiting Models of the Fitness Landscape: A Case against Evolutionary Optimization. PhD Thesis, University of Plymouth.
  18. O'Neill, M., Brabazon T., Ryan, C. & Collins J. J. 2001. Developing a Market Timing System using Grammatical Evolution. Proceedings of GECCO.
  19. Rothlauf, F. 2006. Representations for Genetic and Evolutionary Algorithms. Springer-Verlag New York.
  20. Snajder, J., Basic, B. D., Petrovic, S. & Sikiric, I. 2008. Evolving new lexical association measures using genetic programming. Proceedings of the Association for Computational Linguistics. Ohio, pp. 181-184.
  21. Whigham, P. A. 1995. Grammatically-based Genetic Programming. Workshop on Genetic Programming.
  22. Withall, M. S., Hinde, C. J. & Stone, R. G. 2008. An improved representation for evolving programs. Journal of Genetic Programming and Evolvable Machines. Springer Netherlands, 10(1), pp. 37-70.
  23. Xhemali, D., Hinde, C. J. & Stone, R. G. 2009-a. DomainIndependent Genotype to Phenotype Mapping through XML Rules. International Journal of Computer Science Issues, 7(3).
  24. Xhemali, D., Hinde, C. J. & Stone, R. G. 2010-b. Genetic Evolution of Regular Expressions for the Automated Extraction of Course Names from the Web. Proceedings of the International Conference on Genetic and Evolutionary Methods. Las Vegas.
  25. Yosif, N., Gramm, J., Wang, Q., Noble, W., Karp, R. & Sharan, R. 2010. Prediction of Phenotype Information from Genotype Data. Communications in Information and systems. 10(2), pp. 99-114.

Paper Citation

in Harvard Style

Xhemali D., Hinde C. and Stone R. (2010). GENETIC EVOLUTION OF ‘SORTING’ PROGRAMS THROUGH A NOVEL GENOTYPE-PHENOTYPE MAPPING . In Proceedings of the International Conference on Evolutionary Computation - Volume 1: ICEC, (IJCCI 2010) ISBN 978-989-8425-31-7, pages 190-198. DOI: 10.5220/0003078401900198

in Bibtex Style

author={Daniela Xhemali and Christopher J. Hinde and Roger G. Stone},
booktitle={Proceedings of the International Conference on Evolutionary Computation - Volume 1: ICEC, (IJCCI 2010)},

in EndNote Style

JO - Proceedings of the International Conference on Evolutionary Computation - Volume 1: ICEC, (IJCCI 2010)
SN - 978-989-8425-31-7
AU - Xhemali D.
AU - Hinde C.
AU - Stone R.
PY - 2010
SP - 190
EP - 198
DO - 10.5220/0003078401900198