Big Data Streaming Platforms to Support Real-time Analytics

Eliana Fernandes, Ana Salgado, Jorge Bernardino


In recent years data has grown exponentially due to the evolution of technology. The data flow circulates in a very fast and continuous way, so it must be processed in real time. Therefore, several big data streaming platforms have emerged for processing large amounts of data. Nowadays, companies have difficulties in choosing the platform that best suits their needs. In addition, the information about the platforms is scattered and sometimes omitted, making it difficult for the company to choose the right platform. This work focuses on helping companies or organizations to choose a big data streaming platform to analyze and process their data flow. We provide a description of the most popular platforms, such as: Apache Flink, Apache Kafka, Apache Samza, Apache Spark and Apache Storm. To strengthen the knowledge about these platforms, we also approached their architectures, advantages and limitations. Finally, a comparison among big data streaming platforms will be provided, using as attributes the characteristics that companies usually most need.


Paper Citation