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Abstract: In recent years data has grown exponentially due to the evolution of technology. The data flow circulates in 
a very fast and continuous way, so it must be processed in real time. Therefore, several big data streaming 
platforms have emerged for processing large amounts of data. Nowadays, companies have difficulties in 
choosing the platform that best suits their needs. In addition, the information about the platforms is scattered 
and sometimes omitted, making it difficult for the company to choose the right platform. This work focuses 
on helping companies or organizations to choose a big data streaming platform to analyze and process their 
data flow. We provide a description of the most popular platforms, such as: Apache Flink, Apache Kafka, 
Apache Samza, Apache Spark and Apache Storm. To strengthen the knowledge about these platforms, we 
also approached their architectures, advantages and limitations. Finally, a comparison among big data 
streaming platforms will be provided, using as attributes the characteristics that companies usually most need. 

1 INTRODUCTION 

The explosive growth of the Internet has caused large 
amounts of data to be generated. The companies try 
to react to this evolution and if data isn’t processed 
efficiently and at the same speeds (Safaei, 2017).  

Big data is a generic term for organizing, 
processing, and aggregating large amounts of data. 
The data that has a fast and continuous changing is 
called streaming data  (Behera et al., 2018). It needs 
to be analyzed in a short period of time. Traditional 
Business Intelligence tools aren’t suitable for 
analyzing streaming data in real time, because is 
processed in batch processing (Behera et al., 2018). 
A large number of big data streaming platforms have 
been developed (Imanuel, 2019).  

Big data streaming platforms are the main 
challenge for most companies. The requirements of 
companies are sometimes different from the features 
that these platforms offer. The objective of this work 
is to assist in choosing a big data streaming platform, 
taking into account the characteristics that platforms 
may have for companies. As well as, is to describe 
and compare the most popular and open-source big 
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data streaming platforms, such as: Flink, Kafka, 
Samza, Spark and Storm (Imanuel, 2019). 

The rest of this paper is structured as follows. 
Section 2 provides an overview of the big data 
streaming platforms, their architecture, advantages 
and limitations. Section 3 presents a comparative 
study of these platforms. The conclusions and future 
work are presented in Section 4. 

2 STREAMING PLATFORMS 

Processing data means manipulating, aggregating in 
order to transform data into useful information. 

Big data streaming processing is always up-to-
date. So, when the data is available, it’s processed 
immediately and is transformed into information.  

To ensure continuous and stable operation of the 
entire system it is necessary that the platform has a 
suitable architecture design. The architectures for big 
data streaming platforms, can be: symmetrical 
architecture and master-slave architecture. 

In symmetrical architecture, the functions of each 
node are the same and have good scalability. 
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However, as there is no central node, the system must 
contain resource scheduling, system fault tolerance 
and data balancing (Sun et al., 2019). 

The master-slave architecture has one master node 
and several slave nodes. The master node manages 
system resources, coordinating tasks, completing 
system fault tolerance and balancing data. The slave 
node receives tasks from the master node. 
Throughout the process, there is no data exchange 
between slave nodes, and system-wide operations are 
completely dependent on master node control (Sun et 
al., 2019). 

To solve the problem of large-scale real-time 
processing, current big data streaming platforms, such 
as Flink, Kafka, Samza, Spark Streaming, and Storm, 
have emerged. These platforms adopt the master-
slave architecture. 

There are a lot of big data streaming platforms. 
However, many of them are only used for batch 
processing, such as Hadoop. The chosen platforms 
can handle data in real time and can perform 
streaming processing. Another important issue for the 
choice of platforms was the availability to use, that is 
why we have analyzed only open-source platforms. 
In addition, these platforms have a huge community 
of developers and users (Neves and Bernardino, 
2015).  

Finally, the selection of the platforms was also 
given to the popularity of a platform itself, the wealth 
of resources and its usefulness. We took into account 
some characteristics, such as ease of use, number of 
features, among others (Imanuel, 2019). 

2.1 Apache Flink (flink.apache.org) 

Flink is an open source platform for distributed 
stream and batch data processing (Stratosphere and 
Markl, 2018). It’s a platform that provides data 
distribution, and fault-tolerance for data stream 
calculations (Stratosphere and Markl, 2018). Its 
processes the user-defined functions code through the 
system stack. It’s ability to compute common 
operations (Nasiri, Nahesi and Goudarzi, 2019). 

2.1.1 Flink Architecture 

The platform offers software developers various 
application programming interfaces (APIs), for 
creating new applications to be executed on the Flink 
engine. Examples of these APIs, represented in 
Figure 1 (Stratosphere and Markl, 2018).  

 

Figure 1: APIs and Libraries of Flink (Shahverdi, 2018). 

The main Flink APIs are the Batch DataSet API 
and the Streaming DataStream API. In this case we 
will approach the DataStream API, because this API 
allows to handle a large amount of data in real time. 
This API performs filtering, updates, window 
definition, joins etc. It can receive any kind of data 
from message queues, sockets, and file systems 
(Shahverdi, 2018). 

Flink stream processing model handles incoming 
data on an item-by-item basis as a true stream. Flink 
provides its DataStream API to work with unbounded 
streams of data. The basic components that Flink 
works with are (Gurusamy, Kannan and Nandhini, 
2017): 
 Streams are immutable, unbounded datasets 

that flow through the system; 
 Operators are functions that operate on data 

streams to produce other streams; 
 Sources are the entry point for streams entering 

the system; 
 Sinks are the place where streams flow out of 

the Flink system. They might represent a 
database or a connector to another system. 

The APIs present a logical representation and are 
converted to a directed acyclic task graph that is sent 
to the cluster for execution. A Flink cluster, shown in 
Figure 2, comprises three types of processes: the 
client, the job manager, and at least one task manager.  

The client takes the program code, transforms it 
to a dataflow graph, and submits to the job manager. 
This transformation phase also examines the data 
types of the data exchanged between operators and 
creates serializers and other type/schema specific 
code (Katsifodimos and Schelter, 2016). 

Job manager coordinates distributed execution of 
the data stream. It tracks the status and progress of 
each operator and flow, schedules new operators, and 
coordinates checkpoints and recovery points. 

Actual data processing takes place in task 
managers. And it runs one or more operators that 
produce streams and reports their status to the task 
manager. Job managers maintain buffer pools for 
buffering or materializing streams and network 
connections to exchange data streams between 
operators (Katsifodimos and Schelter, 2016). 
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Figure 2: Flink Processing Flow (Nasiri, Nahesi and 
Goudarzi, 2019). 

2.1.2 Flink Advantages and Limitations 

Flink have some advantages, such as (Levy, 2019): 
 It doesn’t require manual optimization and 

adjustment to data it processes; 
 Dynamically analyzes and optimizes tasks. 

Flink has also some shortcomings (Sun et al., 2019): 
 With a large number of changes to external 

events, it cannot know how large-scale 
resources are needed, creating workload issues; 

 Some scaling limitations. 

2.2 Apache Kafka (kafka.apache.org) 

Kafka is a highly available open source, fault-
tolerant, scalable distributed streaming platform. It 
can be used to store and process data streams, and is 
intended to provide unified, high throughput, low 
latency platform for handling feeds of real time data 
(Freiknecht et al., 2018). Kafka was introduced by 
LinkedIn in 2011 and is written in Scala and Java 
(Shaheen, 2017). Kafka is a publishing and 
subscribing messaging system. A Messaging System 
is responsible for transferring data from one 
application to another and focus on data. Distributed 
messaging is based on the concept of reliable message 
queuing. There are two types of messaging patterns 
available (Team, 2019): 
 Point to Point Messaging System – messages 

remain in a queue. More than one consumer can 
consume the messages in the queue; 

 Publish-Subscribe Messaging System –
messages remain in a topic. Consumers can 
take more than one topic and consume every 
message in that topic.  

2.2.1 Kafka Architecture 

Kafka is deployed as a cluster on multiple servers, so 
it handles its entire publish and subscribe messaging 
system with the help of four APIs, such as: producer, 
consumer, streams processors and connector. 
 Producer API: customers can connect to Kafka 

servers, and customers can post the log stream 
to one or more Kafka topics.  

 Consumer API: Allows clients to connect to 
Kafka servers running in the cluster and 
consume streams of records from one or more 
Kafka topics. This platform consumes the 
messages from Kafka topics. 

 Streams API: Clients act as flow processors by 
consuming flows from one or more topics and 
producing flows to other output topics. This 
allows to transform input and output streams. 

 Connector API: Allows writing reusable 
producer and consumer code. We can create 
reusable source and sink connector 
components for various data sources. 

Figure 3 shows a short illustration of the Kafka 
ecosystem. It shows how producers send messages to 
the cluster and presents how consumers extract this 
message from the broker. Also, it can see the 
Zookeeper, which is used to manage and coordinate 
the Kafka cluster. The Zookeeper is used to notify 
producer and consumer of the presence of any new 
broker in the system or broker failure (Shaheen, 
2017).  

A Kafka cluster is made up of connectors that 
record changes to records in a relational database, 
data producers, data consumers or data processors 
(TutorialKart, 2019). The main components of its 
architecture are topics, registers and intermediaries.  

 

Figure 3: Kafka Ecosystem (JavaTpoint, 2020). 

Topics consist of a flow of records containing 
different information (Shaheen, 2017). Data or 
messages are partitioned into different partitions 
within various topics. Here, messages are indexed and 
stored associated with a data / time stamp. Consumers 
can consult messages from these parties. 

2.2.2 Kafka Advantages and Limitations 

Kafka are some of the advantages (Instaclustr, 2019): 
 Load balance and data replication; 
 Can handle high-velocity of data; 

There are some limitations (JavaTpoint, 2019): 
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 The Kafka broker can sometimes have 
problems when a message needs some tuning 
as Kafka's performance is reduced; 

 Brokers and consumers reduce Kafka 
performance by compressing and 
decompressing data flow, thus affecting 
performance and throughput; 

2.3 Apache Samza (samza.apache.org) 

Samza was developed by LinkedIn. Is a distributed 
flow processing platform and also an open source 
Kafka message queue-based system for 
implementing real-time flow data processing (Sun et 
al., 2019). It is formed by combining Kafka and 
YARN to perform the computation of data streams 
(Nasiri, Nahesi and Goudarzi, 2019). Samza is 
designed to take advantage of Kafka's unique 
architecture and warranties, although Kafka can be 
used by other flow processing systems. That's why 
Samza uses Kafka to provide fault-tolerance and state 
(Gurusamy, Kannan and Nandhini, 2017). 

This platform supports a high throughput for a 
wide variety of processing standards while providing 
operational robustness at the massive scale required. 
To achieve its primary purpose it uses a small number 
of carefully designed abstractions partitioned 
message logs, fault-tolerance local state, and cluster-
based scheduling (Kleppmann, 2018). The core of 
Samza consists of several fairly low-level 
abstractions, on top of which high-level operators 
have been built. 

2.3.1 Samza Architecture 

The Samza architecture consists of the flow data layer 
(Kafka), the execution layer (YARN), and the 
processing layer (Samza API) (Sun et al., 2019).  It is 
used for consuming flows, processing messages, and 
producing derived output streams. One of Samza 
work consists of a Kafka consumer, an event loop that 
calls the application code to process incoming 
messages, and a Kafka producer that sends outgoing 
messages back to Kafka. YARN is used to 
automatically restart failed processes, metrics, and 
monitoring. It even plays the role of resource manager 
and cluster manager. For processing messages, 
Samza provides a Java StreamTask interface that is 
implemented (Kleppmann and Kreps, 2015). 

A node manager demon is running at each node in 
the cluster and is responsible for scheduling the 
process on the node (Behera et al., 2018). A resource 
manager is responsible for coordinating the task 
executed at each node in the cluster. Work progress 

or resource failure at slave node is reported 
periodically by the node manager. Node managers 
might communicate among themselves. Resource 
manager and Node manager are communicated by a 
concept known as ”heartbeat” (Behera et al., 2018). 

Kafka works at the streaming layer, and acts as a 
distributed Message Queuing system that provides at 
least once the message delivery guarantee policy. 
Each data stream is known as a topic that is 
partitioned and replicated across multiple nodes. 
When a producer sends a message to a topic, a key is 
provided and determines the partition to which the 
message is to be sent  (Behera et al., 2018).  

Kafka's provides Samza with some features that 
are difficult or should not be implemented in other 
streaming platforms. The Kafka cluster consists of 
several intermediate servers. On this, each message 
type is defined as a topic. Messages on the same topic 
are partitioned and stored in different intermediaries, 
according to a given key and algorithm. 

2.3.2 Samza Advantages and Limitations 

Samza have some advantages, such as (Levy, 2019): 
 Provides reliable persistence with low latency, 

offering replicated storage; 
 Can eliminate backpressure, allowing data to 

be persisted and processed later. 
Although Samza has many advantages, it also has 

some limitations, such as (Sun et al., 2019): 
 There is no full fault-tolerance, causing state 

information in the memory of the source node 
to be lost when the node fails to transfer; 

 Only supports JVM languages; 
 Doesn’t support very low latency. 

2.4 Apache Spark (spark.apache.org) 

Spark is an open source big data streaming platform, 
developed in 2009 by Matei Zaharia (Vaidya, 2019). 
It’s designed to support iterative algorithms, 
interactive queries and streaming. And it’s highly 
scalable, high fault-tolerance, high performance and 
low latency (Apache Spark - Introduction, 2019).  
Spark allows for ease of developing large-scale 
applications, and it has some scalability issues 
(Ghasemi and Chow, 2019). This system supports 
various programming languages, such as Java, 
Python, Scala (Behera et al., 2018). This platform 
provides large number of tools, as shown in Figure 4, 
for example, stream processing engine called Spark 
Streaming (Shoro and Soomro, 2015). 
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Figure 4: Tools of Spark (Shoro and Soomro, 2015). 

Spark can handle real-time data with an extension 
feature called Spark Streaming. The advantage of 
using Spark Streaming is that it can handle both batch 
and streaming data. It also helps Spark to increase its 
primary scheduling capability and perform streaming 
analysis on real-time data. 

2.4.1 Spark Architecture 

Spark has a well-defined layered architecture 
integrated with many extensions (Vaidya, 2019). The 
architecture of Spark is illustrated in Figure 5:  

 

Figure 5: Structure of Apache Spark (Kirillov, 2016). 

 Resilient Distributed Dataset (RDD) – is a 
partitioned collection of elements that can be 
operated in parallel. Each data set runs on 
different nodes of a cluster; 

 Directed Acyclic Graph (DAG) Scheduler - is a 
graph that is directed and without cycles 
connecting the other edges. The edges of the 
directed graph only go one way. 

Spark creates an operator chart, and when 
performing an action, the chart is sent to a DAG 
Scheduler. DAG Scheduler divides the graph into 
phases. A phase is made up of tasks based on 
partitions of the input data. At the end, the stages are 
sent to the Task Scheduler. The task scheduler starts 
tasks via the cluster manage. 

In Figure 6 the cluster view of Spark is shown. In 
this cluster, the master ensures normal operation of 
the entire Spark system. The worker is the compute 
node, mainly used to accept the tasks of the master 
node (Sun et al., 2019). System processing can be 
divided into three parts, including executor, cluster 
manager, and driver. 

The master node converts the application into a 
set of tasks to be performed by a set of executors. It’s 
then passed to cluster manager for distribution. The 
purpose of them is to distribute tasks to the most 
appropriate server in the cluster. Each server has an 

executor who receives tasks from the cluster 
manager, executes them, and then returns the results 
(Nasiri, Nahesi and Goudarzi, 2019). 

 

Figure 6: Architecture of Apache Spark (Sun et al., 2019). 

2.4.2 Spark Advantages and Limitations 

There are many features of Spark that are very 
beneficial. So, there are several advantages of Spark: 
 Efficient in iterative queries and immediate 

support in SQL queries (Levy, 2019); 
 High-level Machine Learning Algorithms. 

Although the Spark system provides solutions for 
streaming data on the time delay, fault-tolerance and 
throughput, there are also some unsolved 
shortcomings of the Spark system (Sun et al., 2019): 
 It can be complex to configure and deploy; 
 The Spark system tends to be unstable and can 

only be used for calculations; 
 Task scheduling efficiency is very low. 

2.5 Apache Storm (storm.apache.org) 

Storm is an open source big data streaming platform 
and can handle large amounts of data. Storm 
pioneered the wave of fault-tolerance distributed flow 
processing platforms (Shahverdi, Awad and Sakr, 
2019). This platform was originally created by 
Nathan Marz in 2011 (Point, 2019).  

Storm focuses on extremely low latency 
(Gurusamy, Kannan and Nandhini, 2017) and it’s 
scalable, and easy to set up and operate (Foundation, 
2019 b).  

Storm has many use cases: real-time analytics, 
online machine learning, continuous computation, 
ETL (Extract, Transform, Load), and among others 
(Foundation, 2019 b). The Storm is written in Java 
and Clojure. 

2.5.1 Storm Architecture 

In Storm, the topologies are composed of multiple 
components that are arranged in a directed acyclic 
graph (DAG) of real-time computing. In a DAG the 
edges show us the data flow between them and the 
vertices show the components.  
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Storm topology consists of several components 
allowing to transfer one data stream to another stream 
in a reliable and distributive way. Storm data streams 
are precisely unlimited sequences of tuples, and also 
the data structure to represent standard data types or 
user-defined types with some additional serialization 
code (Hoseiny Farahabady et al., 2016). 

Spouts are the source of data streams. It allows a 
topology to retrieve data from external data 
generators for later transformation into standard 
tuples (Sun et al., 2019). As a topology is fed by input 
tuples, Spouts can emit streams along the edges of the 
directed graph (Hoseiny Farahabady et al., 2016).  

Bolts are the processing nodes that receive Spout 
tuples, consume any number of input streams, 
perform some processing, and issue new streams 
(Shahverdi, Awad and Sakr, 2019). Bolts represent 
the logical components of the implementation of 
various flow processing operations.  

In Storm, the process of a topology is always sent 
to the Zookeeper cluster. For running topologies, 
there are three types of entities (Shahverdi, 2018): 
 Worker Process: it’s processing executors 

within its topology. A topology can contain 
more than one worker process; 

 Executor: This is a thread that was generated 
by the Worker Process. Executor processes 
perform tasks for Spouts and Bolts; 

 Task: It’s the entity that processes the data. In 
topology, multiple tasks are always equal or 
greater than the number of executors. 

The topology is then supported by the Zookeeper 
cluster where the master node will distribute code 
among worker nodes for execution (Amakobe, 2016). 

The Storm architecture, is shown in Figure 7. It 
consists of a primary node Nimbus, a number of slave 
supervisors, and a Zookeeper cluster.  

The master node of cluster is Nimbus, responsible 
for executing the topology and monitoring the 
execution of all process and Zookeeper cluster. It 
analyzes the topology and the task to be performed. It 
will then distribute the task to an available supervisor 
(Point, 2019). It consists for distributing data among 
all the worker nodes, assign tasks and monitoring 
failures. Nimbus and supervisors communicate with 
each other through a Zookeeper cluster. 

A Zookeeper cluster is used to coordinate the 
work between the master node and the slave nodes 
(Nasiri, Nahesi and Goudarzi, 2019). It is responsible 
for managing all message communication, with the 
help of message acknowledgments, processing status, 
among others (Shahverdi, Awad and Sakr, 2019).  

The cluster is capable of storing job topology 
information, slave supervisor status, cluster-wide 
state and configuration information (Sun et al., 2019). 

 

Figure 7: Storm Architecture (Sun et al., 2019). 

A worker creates executors and asks them to 
perform a particular task. Its process will have various 
executors. Each worker node runs a daemon called 
Supervisor, that can run one or more worker 
processes (Nasiri, Nahesi and Goudarzi, 2019). 

2.5.2 Storm Advantages and Limitations 

There are several advantages of Storm (Point, 2019): 
 Storm is unbelievably fast because it has 

enormous power of processing the data; 
 Storm has operational intelligence (it focuses 

on real-time dynamic, business analytics 
delivering visibility into data, streaming events 
and business operations); 

 It can guarantee data processing if a process is 
killed by any of the connected nodes in the 
cluster or if messages are lost. 

Storm has some drawbacks (Sun et al., 2019): 
 Resource allocation doesn’t take the structural 

features of the task topology into account and 
cannot be adapted to the dynamic changes of 
the data load; 

 The scalability of the system is limited. 

3 COMPARISION OF BIG DATA 
STREAMING PLATFORMS  

In this section, some features are analyzed to compare 
the presented platforms. In order to choose the main 
characteristics of big data streaming platforms, an 
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analysis of possible problems that companies had 
already had was made. 

According to (Nasiri, Nahesi and Goudarzi, 
2019), the characteristics many companies had 
difficulty are scalability, privacy, load balancing, 
fault tolerance, integration, consistency, timeliness, 
privacy, accuracy, among others. Then, it was 
concluded that these are the main characteristics in 
the analysis of big data streaming. Another analysis 
made on platform resources is that any platform needs 
to be robust, i.e., it contains the main characteristics 
of a big data streaming platform. It is necessary that 
it has a simple dashboard, is accessible anywhere. 

The following features were selected for 
comparative analysis (Kolajo, Daramola and 
Adebiyi, 2019) (Imanuel, 2019): 

▪ Fault-tolerance: that allows an application to 
continue working without interruption; 

▪ Scalability: that means research efforts should 
be focused on developing scalable structures 
that accommodate data flow computation 
mode, effective resource allocation strategy, 
and parallelization issues to address the 
increasing size and complexity of data; 

▪ Robustness: it’s the ability of a computer 
system to handle errors during execution; 

▪ Dashboards: make it possible to visualize data 
in the form of graphs or images that show the 
most important graphics; 

▪ Integration: it enables efficient operations on 
different data sets; 

▪ Consistency: achieving high consistency (i.e. 
stability) in big data stream computing 
environments is non-trivial as it is difficult to 
determine which data is needed and which 
nodes should be consistent; 

▪ Security: it proposes techniques for protecting 
a dataset before its analysis; 

▪ Time handling: it is desired to process data 
using the event time, the time when the event 
occurred, instead of the processing-time, the 
time of the machine when the data is processed; 

▪ Stream SQL: it’s a query language that extends 
SQL and process real-time data streams; 

▪ ETL Optimization: is the process by which data 
is extracted from optimized data sources; 

▪ Machine Learning: data analysis method that 
automates the construction of analytical 
models; 

▪ Elasticity: the degree to which a system is able 
to adapt to workload changes. 

After choosing the attributes we will proceed to 
the comparison of the five big data streaming 
platforms, shown in Table 1. 

Table 1: Platforms comparison based on the presented 
features. 

Features Flink Kafka Samza Spark Storm
Fault-

tolerance ✔ ✔ ✔ ✔ ✔ 

Scalability ✔ ✔ ✔ ✔ ✔

Robustness ✔ ✔ ✔  ✔

Dashboards ✔ ✔ ✔ ✔ ✔

Integration ✔ ✔ ✔ ✔ ✔

Consistency ✔ ✔ ✔ ✔ 
Security ✔ ✔ ✔ ✔ ✔

Time 
handling     ✔ 

Stream SQL ✔ ✔ ✔ ✔ ✔
ETL 

optimization ✔ ✔  ✔ ✔ 
Machine 
Learning ✔ ✔ ✔ ✔ ✔ 

Elasticity ✔ ✔ ✔ ✔ ✔

Flink, Kafka, Samza, Spark and Storm are open-
source big data streaming platforms and are used for 
real-time data analysis. All of them offer fault-
tolerance, scalability, dashboards, integration, 
security, SQL stream, machine learning and elasticity 
and have a simple implementation methodology. 

Regarding the robustness, not all platforms offer 
this feature that is relatively important. We can verify 
that the only platform that doesn’t contain this feature 
is Spark. Another feature that managed to divide the 
quality of the platforms was the consistency, four of 
the five platforms have this component, namely: 
Flink, Kafka Samza and Spark. 

Finally, there is a slight highlight on the Storm, as 
only this tool contains time handling. 

In general, there is an emphasis on three 
platforms, Flink, Kafka and Storm, because among 
the features chosen for comparison, these platforms 
form the ones that obtained the greatest number of 
features. These platforms only fail in one feature, as 
already mentioned. However, the Samza and Spark 
fail in two features, being just behind the other 
platforms. 

4 CONCLUSIONS 

As the amount of data generated by different devices 
worldwide is growing, flow processing becomes a 
crucial and essential requirement on big data 
streaming platforms. The main objective of this work 
was to describe and compare the most popular and 
open-source big data streaming platforms: Flink, 
Kafka, Samza, Spark and Storm. A description was 
made of these platforms, their architectures and 
advantages and limitations. The comparison was 
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made using features that were chosen through 
brainstorming and researches, taking into account the 
needs that companies have when using these big data 
streaming platforms. The Flink, Kafka, and Storm 
platforms were the ones that achieved the best range, 
as they contain more features that we analyzed.  

As future work, we intend to choose three of the 
compared platforms to evaluate them with a 
benchmark application. Research on existing 
benchmarks will be carried out and the one that best 
fits to evaluate the platforms will be chosen. The 
evaluation will be made taking into account the 
features that have been compared. We intend to 
choose the best platform and use it in a real 
environment. An extensive quantitative assessment 
(performance) of these systems will also be a good 
suggestion. 
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