
Big Data Streaming Platforms to Support Real-time Analytics

Eliana Fernandes1, Ana Carolina Salgado2 a and Jorge Bernardino1,3 b
1Polytechnic of Coimbra – ISEC, Rua Pedro Nunes, Quinta da Nora, 3030-199 Coimbra, Portugal

2Centre for Informatics, Universidade Federal de Pernambuco, Recife, Brazil
3Centre for Informatics and Systems of the University of Coimbra (CISUC), Portugal

Keywords: Streaming, Real-time Analytics, Big Data, Fault-Tolerance.

Abstract: In recent years data has grown exponentially due to the evolution of technology. The data flow circulates in
a very fast and continuous way, so it must be processed in real time. Therefore, several big data streaming
platforms have emerged for processing large amounts of data. Nowadays, companies have difficulties in
choosing the platform that best suits their needs. In addition, the information about the platforms is scattered
and sometimes omitted, making it difficult for the company to choose the right platform. This work focuses
on helping companies or organizations to choose a big data streaming platform to analyze and process their
data flow. We provide a description of the most popular platforms, such as: Apache Flink, Apache Kafka,
Apache Samza, Apache Spark and Apache Storm. To strengthen the knowledge about these platforms, we
also approached their architectures, advantages and limitations. Finally, a comparison among big data
streaming platforms will be provided, using as attributes the characteristics that companies usually most need.

1 INTRODUCTION

The explosive growth of the Internet has caused large
amounts of data to be generated. The companies try
to react to this evolution and if data isn’t processed
efficiently and at the same speeds (Safaei, 2017).

Big data is a generic term for organizing,
processing, and aggregating large amounts of data.
The data that has a fast and continuous changing is
called streaming data (Behera et al., 2018). It needs
to be analyzed in a short period of time. Traditional
Business Intelligence tools aren’t suitable for
analyzing streaming data in real time, because is
processed in batch processing (Behera et al., 2018).
A large number of big data streaming platforms have
been developed (Imanuel, 2019).

Big data streaming platforms are the main
challenge for most companies. The requirements of
companies are sometimes different from the features
that these platforms offer. The objective of this work
is to assist in choosing a big data streaming platform,
taking into account the characteristics that platforms
may have for companies. As well as, is to describe
and compare the most popular and open-source big

a https://orcid.org/0000-0003-4036-8064
b https://orcid.org/0000-0001-9660-2011

data streaming platforms, such as: Flink, Kafka,
Samza, Spark and Storm (Imanuel, 2019).

The rest of this paper is structured as follows.
Section 2 provides an overview of the big data
streaming platforms, their architecture, advantages
and limitations. Section 3 presents a comparative
study of these platforms. The conclusions and future
work are presented in Section 4.

2 STREAMING PLATFORMS

Processing data means manipulating, aggregating in
order to transform data into useful information.

Big data streaming processing is always up-to-
date. So, when the data is available, it’s processed
immediately and is transformed into information.

To ensure continuous and stable operation of the
entire system it is necessary that the platform has a
suitable architecture design. The architectures for big
data streaming platforms, can be: symmetrical
architecture and master-slave architecture.

In symmetrical architecture, the functions of each
node are the same and have good scalability.

426
Fernandes, E., Salgado, A. and Bernardino, J.
Big Data Streaming Platforms to Support Real-time Analytics.
DOI: 10.5220/0009817304260433
In Proceedings of the 15th International Conference on Software Technologies (ICSOFT 2020), pages 426-433
ISBN: 978-989-758-443-5
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

However, as there is no central node, the system must
contain resource scheduling, system fault tolerance
and data balancing (Sun et al., 2019).

The master-slave architecture has one master node
and several slave nodes. The master node manages
system resources, coordinating tasks, completing
system fault tolerance and balancing data. The slave
node receives tasks from the master node.
Throughout the process, there is no data exchange
between slave nodes, and system-wide operations are
completely dependent on master node control (Sun et
al., 2019).

To solve the problem of large-scale real-time
processing, current big data streaming platforms, such
as Flink, Kafka, Samza, Spark Streaming, and Storm,
have emerged. These platforms adopt the master-
slave architecture.

There are a lot of big data streaming platforms.
However, many of them are only used for batch
processing, such as Hadoop. The chosen platforms
can handle data in real time and can perform
streaming processing. Another important issue for the
choice of platforms was the availability to use, that is
why we have analyzed only open-source platforms.
In addition, these platforms have a huge community
of developers and users (Neves and Bernardino,
2015).

Finally, the selection of the platforms was also
given to the popularity of a platform itself, the wealth
of resources and its usefulness. We took into account
some characteristics, such as ease of use, number of
features, among others (Imanuel, 2019).

2.1 Apache Flink (flink.apache.org)

Flink is an open source platform for distributed
stream and batch data processing (Stratosphere and
Markl, 2018). It’s a platform that provides data
distribution, and fault-tolerance for data stream
calculations (Stratosphere and Markl, 2018). Its
processes the user-defined functions code through the
system stack. It’s ability to compute common
operations (Nasiri, Nahesi and Goudarzi, 2019).

2.1.1 Flink Architecture

The platform offers software developers various
application programming interfaces (APIs), for
creating new applications to be executed on the Flink
engine. Examples of these APIs, represented in
Figure 1 (Stratosphere and Markl, 2018).

Figure 1: APIs and Libraries of Flink (Shahverdi, 2018).

The main Flink APIs are the Batch DataSet API
and the Streaming DataStream API. In this case we
will approach the DataStream API, because this API
allows to handle a large amount of data in real time.
This API performs filtering, updates, window
definition, joins etc. It can receive any kind of data
from message queues, sockets, and file systems
(Shahverdi, 2018).

Flink stream processing model handles incoming
data on an item-by-item basis as a true stream. Flink
provides its DataStream API to work with unbounded
streams of data. The basic components that Flink
works with are (Gurusamy, Kannan and Nandhini,
2017):
 Streams are immutable, unbounded datasets

that flow through the system;
 Operators are functions that operate on data

streams to produce other streams;
 Sources are the entry point for streams entering

the system;
 Sinks are the place where streams flow out of

the Flink system. They might represent a
database or a connector to another system.

The APIs present a logical representation and are
converted to a directed acyclic task graph that is sent
to the cluster for execution. A Flink cluster, shown in
Figure 2, comprises three types of processes: the
client, the job manager, and at least one task manager.

The client takes the program code, transforms it
to a dataflow graph, and submits to the job manager.
This transformation phase also examines the data
types of the data exchanged between operators and
creates serializers and other type/schema specific
code (Katsifodimos and Schelter, 2016).

Job manager coordinates distributed execution of
the data stream. It tracks the status and progress of
each operator and flow, schedules new operators, and
coordinates checkpoints and recovery points.

Actual data processing takes place in task
managers. And it runs one or more operators that
produce streams and reports their status to the task
manager. Job managers maintain buffer pools for
buffering or materializing streams and network
connections to exchange data streams between
operators (Katsifodimos and Schelter, 2016).

Big Data Streaming Platforms to Support Real-time Analytics

427

Figure 2: Flink Processing Flow (Nasiri, Nahesi and
Goudarzi, 2019).

2.1.2 Flink Advantages and Limitations

Flink have some advantages, such as (Levy, 2019):
 It doesn’t require manual optimization and

adjustment to data it processes;
 Dynamically analyzes and optimizes tasks.

Flink has also some shortcomings (Sun et al., 2019):
 With a large number of changes to external

events, it cannot know how large-scale
resources are needed, creating workload issues;

 Some scaling limitations.

2.2 Apache Kafka (kafka.apache.org)

Kafka is a highly available open source, fault-
tolerant, scalable distributed streaming platform. It
can be used to store and process data streams, and is
intended to provide unified, high throughput, low
latency platform for handling feeds of real time data
(Freiknecht et al., 2018). Kafka was introduced by
LinkedIn in 2011 and is written in Scala and Java
(Shaheen, 2017). Kafka is a publishing and
subscribing messaging system. A Messaging System
is responsible for transferring data from one
application to another and focus on data. Distributed
messaging is based on the concept of reliable message
queuing. There are two types of messaging patterns
available (Team, 2019):
 Point to Point Messaging System – messages

remain in a queue. More than one consumer can
consume the messages in the queue;

 Publish-Subscribe Messaging System –
messages remain in a topic. Consumers can
take more than one topic and consume every
message in that topic.

2.2.1 Kafka Architecture

Kafka is deployed as a cluster on multiple servers, so
it handles its entire publish and subscribe messaging
system with the help of four APIs, such as: producer,
consumer, streams processors and connector.
 Producer API: customers can connect to Kafka

servers, and customers can post the log stream
to one or more Kafka topics.

 Consumer API: Allows clients to connect to
Kafka servers running in the cluster and
consume streams of records from one or more
Kafka topics. This platform consumes the
messages from Kafka topics.

 Streams API: Clients act as flow processors by
consuming flows from one or more topics and
producing flows to other output topics. This
allows to transform input and output streams.

 Connector API: Allows writing reusable
producer and consumer code. We can create
reusable source and sink connector
components for various data sources.

Figure 3 shows a short illustration of the Kafka
ecosystem. It shows how producers send messages to
the cluster and presents how consumers extract this
message from the broker. Also, it can see the
Zookeeper, which is used to manage and coordinate
the Kafka cluster. The Zookeeper is used to notify
producer and consumer of the presence of any new
broker in the system or broker failure (Shaheen,
2017).

A Kafka cluster is made up of connectors that
record changes to records in a relational database,
data producers, data consumers or data processors
(TutorialKart, 2019). The main components of its
architecture are topics, registers and intermediaries.

Figure 3: Kafka Ecosystem (JavaTpoint, 2020).

Topics consist of a flow of records containing
different information (Shaheen, 2017). Data or
messages are partitioned into different partitions
within various topics. Here, messages are indexed and
stored associated with a data / time stamp. Consumers
can consult messages from these parties.

2.2.2 Kafka Advantages and Limitations

Kafka are some of the advantages (Instaclustr, 2019):
 Load balance and data replication;
 Can handle high-velocity of data;

There are some limitations (JavaTpoint, 2019):

ICSOFT 2020 - 15th International Conference on Software Technologies

428

 The Kafka broker can sometimes have
problems when a message needs some tuning
as Kafka's performance is reduced;

 Brokers and consumers reduce Kafka
performance by compressing and
decompressing data flow, thus affecting
performance and throughput;

2.3 Apache Samza (samza.apache.org)

Samza was developed by LinkedIn. Is a distributed
flow processing platform and also an open source
Kafka message queue-based system for
implementing real-time flow data processing (Sun et
al., 2019). It is formed by combining Kafka and
YARN to perform the computation of data streams
(Nasiri, Nahesi and Goudarzi, 2019). Samza is
designed to take advantage of Kafka's unique
architecture and warranties, although Kafka can be
used by other flow processing systems. That's why
Samza uses Kafka to provide fault-tolerance and state
(Gurusamy, Kannan and Nandhini, 2017).

This platform supports a high throughput for a
wide variety of processing standards while providing
operational robustness at the massive scale required.
To achieve its primary purpose it uses a small number
of carefully designed abstractions partitioned
message logs, fault-tolerance local state, and cluster-
based scheduling (Kleppmann, 2018). The core of
Samza consists of several fairly low-level
abstractions, on top of which high-level operators
have been built.

2.3.1 Samza Architecture

The Samza architecture consists of the flow data layer
(Kafka), the execution layer (YARN), and the
processing layer (Samza API) (Sun et al., 2019). It is
used for consuming flows, processing messages, and
producing derived output streams. One of Samza
work consists of a Kafka consumer, an event loop that
calls the application code to process incoming
messages, and a Kafka producer that sends outgoing
messages back to Kafka. YARN is used to
automatically restart failed processes, metrics, and
monitoring. It even plays the role of resource manager
and cluster manager. For processing messages,
Samza provides a Java StreamTask interface that is
implemented (Kleppmann and Kreps, 2015).

A node manager demon is running at each node in
the cluster and is responsible for scheduling the
process on the node (Behera et al., 2018). A resource
manager is responsible for coordinating the task
executed at each node in the cluster. Work progress

or resource failure at slave node is reported
periodically by the node manager. Node managers
might communicate among themselves. Resource
manager and Node manager are communicated by a
concept known as ”heartbeat” (Behera et al., 2018).

Kafka works at the streaming layer, and acts as a
distributed Message Queuing system that provides at
least once the message delivery guarantee policy.
Each data stream is known as a topic that is
partitioned and replicated across multiple nodes.
When a producer sends a message to a topic, a key is
provided and determines the partition to which the
message is to be sent (Behera et al., 2018).

Kafka's provides Samza with some features that
are difficult or should not be implemented in other
streaming platforms. The Kafka cluster consists of
several intermediate servers. On this, each message
type is defined as a topic. Messages on the same topic
are partitioned and stored in different intermediaries,
according to a given key and algorithm.

2.3.2 Samza Advantages and Limitations

Samza have some advantages, such as (Levy, 2019):
 Provides reliable persistence with low latency,

offering replicated storage;
 Can eliminate backpressure, allowing data to

be persisted and processed later.
Although Samza has many advantages, it also has

some limitations, such as (Sun et al., 2019):
 There is no full fault-tolerance, causing state

information in the memory of the source node
to be lost when the node fails to transfer;

 Only supports JVM languages;
 Doesn’t support very low latency.

2.4 Apache Spark (spark.apache.org)

Spark is an open source big data streaming platform,
developed in 2009 by Matei Zaharia (Vaidya, 2019).
It’s designed to support iterative algorithms,
interactive queries and streaming. And it’s highly
scalable, high fault-tolerance, high performance and
low latency (Apache Spark - Introduction, 2019).
Spark allows for ease of developing large-scale
applications, and it has some scalability issues
(Ghasemi and Chow, 2019). This system supports
various programming languages, such as Java,
Python, Scala (Behera et al., 2018). This platform
provides large number of tools, as shown in Figure 4,
for example, stream processing engine called Spark
Streaming (Shoro and Soomro, 2015).

Big Data Streaming Platforms to Support Real-time Analytics

429

Figure 4: Tools of Spark (Shoro and Soomro, 2015).

Spark can handle real-time data with an extension
feature called Spark Streaming. The advantage of
using Spark Streaming is that it can handle both batch
and streaming data. It also helps Spark to increase its
primary scheduling capability and perform streaming
analysis on real-time data.

2.4.1 Spark Architecture

Spark has a well-defined layered architecture
integrated with many extensions (Vaidya, 2019). The
architecture of Spark is illustrated in Figure 5:

Figure 5: Structure of Apache Spark (Kirillov, 2016).

 Resilient Distributed Dataset (RDD) – is a
partitioned collection of elements that can be
operated in parallel. Each data set runs on
different nodes of a cluster;

 Directed Acyclic Graph (DAG) Scheduler - is a
graph that is directed and without cycles
connecting the other edges. The edges of the
directed graph only go one way.

Spark creates an operator chart, and when
performing an action, the chart is sent to a DAG
Scheduler. DAG Scheduler divides the graph into
phases. A phase is made up of tasks based on
partitions of the input data. At the end, the stages are
sent to the Task Scheduler. The task scheduler starts
tasks via the cluster manage.

In Figure 6 the cluster view of Spark is shown. In
this cluster, the master ensures normal operation of
the entire Spark system. The worker is the compute
node, mainly used to accept the tasks of the master
node (Sun et al., 2019). System processing can be
divided into three parts, including executor, cluster
manager, and driver.

The master node converts the application into a
set of tasks to be performed by a set of executors. It’s
then passed to cluster manager for distribution. The
purpose of them is to distribute tasks to the most
appropriate server in the cluster. Each server has an

executor who receives tasks from the cluster
manager, executes them, and then returns the results
(Nasiri, Nahesi and Goudarzi, 2019).

Figure 6: Architecture of Apache Spark (Sun et al., 2019).

2.4.2 Spark Advantages and Limitations

There are many features of Spark that are very
beneficial. So, there are several advantages of Spark:
 Efficient in iterative queries and immediate

support in SQL queries (Levy, 2019);
 High-level Machine Learning Algorithms.

Although the Spark system provides solutions for
streaming data on the time delay, fault-tolerance and
throughput, there are also some unsolved
shortcomings of the Spark system (Sun et al., 2019):
 It can be complex to configure and deploy;
 The Spark system tends to be unstable and can

only be used for calculations;
 Task scheduling efficiency is very low.

2.5 Apache Storm (storm.apache.org)

Storm is an open source big data streaming platform
and can handle large amounts of data. Storm
pioneered the wave of fault-tolerance distributed flow
processing platforms (Shahverdi, Awad and Sakr,
2019). This platform was originally created by
Nathan Marz in 2011 (Point, 2019).

Storm focuses on extremely low latency
(Gurusamy, Kannan and Nandhini, 2017) and it’s
scalable, and easy to set up and operate (Foundation,
2019 b).

Storm has many use cases: real-time analytics,
online machine learning, continuous computation,
ETL (Extract, Transform, Load), and among others
(Foundation, 2019 b). The Storm is written in Java
and Clojure.

2.5.1 Storm Architecture

In Storm, the topologies are composed of multiple
components that are arranged in a directed acyclic
graph (DAG) of real-time computing. In a DAG the
edges show us the data flow between them and the
vertices show the components.

ICSOFT 2020 - 15th International Conference on Software Technologies

430

Storm topology consists of several components
allowing to transfer one data stream to another stream
in a reliable and distributive way. Storm data streams
are precisely unlimited sequences of tuples, and also
the data structure to represent standard data types or
user-defined types with some additional serialization
code (Hoseiny Farahabady et al., 2016).

Spouts are the source of data streams. It allows a
topology to retrieve data from external data
generators for later transformation into standard
tuples (Sun et al., 2019). As a topology is fed by input
tuples, Spouts can emit streams along the edges of the
directed graph (Hoseiny Farahabady et al., 2016).

Bolts are the processing nodes that receive Spout
tuples, consume any number of input streams,
perform some processing, and issue new streams
(Shahverdi, Awad and Sakr, 2019). Bolts represent
the logical components of the implementation of
various flow processing operations.

In Storm, the process of a topology is always sent
to the Zookeeper cluster. For running topologies,
there are three types of entities (Shahverdi, 2018):
 Worker Process: it’s processing executors

within its topology. A topology can contain
more than one worker process;

 Executor: This is a thread that was generated
by the Worker Process. Executor processes
perform tasks for Spouts and Bolts;

 Task: It’s the entity that processes the data. In
topology, multiple tasks are always equal or
greater than the number of executors.

The topology is then supported by the Zookeeper
cluster where the master node will distribute code
among worker nodes for execution (Amakobe, 2016).

The Storm architecture, is shown in Figure 7. It
consists of a primary node Nimbus, a number of slave
supervisors, and a Zookeeper cluster.

The master node of cluster is Nimbus, responsible
for executing the topology and monitoring the
execution of all process and Zookeeper cluster. It
analyzes the topology and the task to be performed. It
will then distribute the task to an available supervisor
(Point, 2019). It consists for distributing data among
all the worker nodes, assign tasks and monitoring
failures. Nimbus and supervisors communicate with
each other through a Zookeeper cluster.

A Zookeeper cluster is used to coordinate the
work between the master node and the slave nodes
(Nasiri, Nahesi and Goudarzi, 2019). It is responsible
for managing all message communication, with the
help of message acknowledgments, processing status,
among others (Shahverdi, Awad and Sakr, 2019).

The cluster is capable of storing job topology
information, slave supervisor status, cluster-wide
state and configuration information (Sun et al., 2019).

Figure 7: Storm Architecture (Sun et al., 2019).

A worker creates executors and asks them to
perform a particular task. Its process will have various
executors. Each worker node runs a daemon called
Supervisor, that can run one or more worker
processes (Nasiri, Nahesi and Goudarzi, 2019).

2.5.2 Storm Advantages and Limitations

There are several advantages of Storm (Point, 2019):
 Storm is unbelievably fast because it has

enormous power of processing the data;
 Storm has operational intelligence (it focuses

on real-time dynamic, business analytics
delivering visibility into data, streaming events
and business operations);

 It can guarantee data processing if a process is
killed by any of the connected nodes in the
cluster or if messages are lost.

Storm has some drawbacks (Sun et al., 2019):
 Resource allocation doesn’t take the structural

features of the task topology into account and
cannot be adapted to the dynamic changes of
the data load;

 The scalability of the system is limited.

3 COMPARISION OF BIG DATA
STREAMING PLATFORMS

In this section, some features are analyzed to compare
the presented platforms. In order to choose the main
characteristics of big data streaming platforms, an

Big Data Streaming Platforms to Support Real-time Analytics

431

analysis of possible problems that companies had
already had was made.

According to (Nasiri, Nahesi and Goudarzi,
2019), the characteristics many companies had
difficulty are scalability, privacy, load balancing,
fault tolerance, integration, consistency, timeliness,
privacy, accuracy, among others. Then, it was
concluded that these are the main characteristics in
the analysis of big data streaming. Another analysis
made on platform resources is that any platform needs
to be robust, i.e., it contains the main characteristics
of a big data streaming platform. It is necessary that
it has a simple dashboard, is accessible anywhere.

The following features were selected for
comparative analysis (Kolajo, Daramola and
Adebiyi, 2019) (Imanuel, 2019):

▪ Fault-tolerance: that allows an application to
continue working without interruption;

▪ Scalability: that means research efforts should
be focused on developing scalable structures
that accommodate data flow computation
mode, effective resource allocation strategy,
and parallelization issues to address the
increasing size and complexity of data;

▪ Robustness: it’s the ability of a computer
system to handle errors during execution;

▪ Dashboards: make it possible to visualize data
in the form of graphs or images that show the
most important graphics;

▪ Integration: it enables efficient operations on
different data sets;

▪ Consistency: achieving high consistency (i.e.
stability) in big data stream computing
environments is non-trivial as it is difficult to
determine which data is needed and which
nodes should be consistent;

▪ Security: it proposes techniques for protecting
a dataset before its analysis;

▪ Time handling: it is desired to process data
using the event time, the time when the event
occurred, instead of the processing-time, the
time of the machine when the data is processed;

▪ Stream SQL: it’s a query language that extends
SQL and process real-time data streams;

▪ ETL Optimization: is the process by which data
is extracted from optimized data sources;

▪ Machine Learning: data analysis method that
automates the construction of analytical
models;

▪ Elasticity: the degree to which a system is able
to adapt to workload changes.

After choosing the attributes we will proceed to
the comparison of the five big data streaming
platforms, shown in Table 1.

Table 1: Platforms comparison based on the presented
features.

Features Flink Kafka Samza Spark Storm
Fault-

tolerance ✔ ✔ ✔ ✔ ✔

Scalability ✔ ✔ ✔ ✔ ✔

Robustness ✔ ✔ ✔ ✔

Dashboards ✔ ✔ ✔ ✔ ✔

Integration ✔ ✔ ✔ ✔ ✔

Consistency ✔ ✔ ✔ ✔
Security ✔ ✔ ✔ ✔ ✔

Time
handling ✔

Stream SQL ✔ ✔ ✔ ✔ ✔
ETL

optimization ✔ ✔ ✔ ✔
Machine
Learning ✔ ✔ ✔ ✔ ✔

Elasticity ✔ ✔ ✔ ✔ ✔

Flink, Kafka, Samza, Spark and Storm are open-
source big data streaming platforms and are used for
real-time data analysis. All of them offer fault-
tolerance, scalability, dashboards, integration,
security, SQL stream, machine learning and elasticity
and have a simple implementation methodology.

Regarding the robustness, not all platforms offer
this feature that is relatively important. We can verify
that the only platform that doesn’t contain this feature
is Spark. Another feature that managed to divide the
quality of the platforms was the consistency, four of
the five platforms have this component, namely:
Flink, Kafka Samza and Spark.

Finally, there is a slight highlight on the Storm, as
only this tool contains time handling.

In general, there is an emphasis on three
platforms, Flink, Kafka and Storm, because among
the features chosen for comparison, these platforms
form the ones that obtained the greatest number of
features. These platforms only fail in one feature, as
already mentioned. However, the Samza and Spark
fail in two features, being just behind the other
platforms.

4 CONCLUSIONS

As the amount of data generated by different devices
worldwide is growing, flow processing becomes a
crucial and essential requirement on big data
streaming platforms. The main objective of this work
was to describe and compare the most popular and
open-source big data streaming platforms: Flink,
Kafka, Samza, Spark and Storm. A description was
made of these platforms, their architectures and
advantages and limitations. The comparison was

ICSOFT 2020 - 15th International Conference on Software Technologies

432

made using features that were chosen through
brainstorming and researches, taking into account the
needs that companies have when using these big data
streaming platforms. The Flink, Kafka, and Storm
platforms were the ones that achieved the best range,
as they contain more features that we analyzed.

As future work, we intend to choose three of the
compared platforms to evaluate them with a
benchmark application. Research on existing
benchmarks will be carried out and the one that best
fits to evaluate the platforms will be chosen. The
evaluation will be made taking into account the
features that have been compared. We intend to
choose the best platform and use it in a real
environment. An extensive quantitative assessment
(performance) of these systems will also be a good
suggestion.

REFERENCES

Amakobe, M. (2016) ‘A comparison between Apache
Samza and Storm’, Colorado Tech University.

Behera, R. K, Das, S., Jena, M., Rath, S. K. & Sahoo, B.
(2017). ‘A Comparative Study of Distributed Tools for
Analyzing Streaming Data’, 2017 Int. Conference on
Information Technology (ICIT), pp. 79–84.

D'Silva, G. M., Khan, A., Gaurav & Bari, S. (2018) ‘Real-
time processing of IoT events with historic data using
Apache Kafka and Apache Spark with dashing
framework’, 2017 2nd IEEE Int. Conference on Recent
Trends in Electronics, Information & Communication
Technology (RTEICT), pp. 1804–1809.

Foundation, A. S. (2019 a) Apache Kafka. Available at:
https://kafka.apache.org/.

Foundation, A. S. (2019 b) Apache Storm. Available at:
https://storm.apache.org/.

Freiknecht, J., Papp, S, Freiknecht, J. & Papp, S. (2018)
‘Apache Kafka’, Encyclopedia of Big Data
Technologies. Springer, Cham, p. 8.

Ghasemi, E. & Chow, P. (2019) ‘Accelerating Apache
Spark with FPGAs’, 2016, Wiley Online Library,
Concurrency and Computation: Practice and
Experience, v31, Issue 2.

Gurusamy, V., Kannan, S. and Nandhini, K. (2017) ‘The
Real Time Big Data Processing Framework
Advantages and Limitations’, Int. Journal of Computer
Sciences and Eng., 5(12): pp 305-312.

Hoseiny Farahabady, M. R., Dehghani Samani, H. R.,
Wang, Y., Zomaya, A. Y. & Tari, Z, (2016) ‘A QoS-
aware controller for Apache Storm’, 2016 IEEE 15th
Int. Symposium on Network Computing and
Applications (NCA), pp. 334–342.

Imanuel (2019) Top 20, free open source and premium
stream analytics platforms. Available at:
https://www.predictiveanalyticstoday.com/top-open-
source-commercial-stream-analytics-platforms.

Instaclustr (2019) Apache Kafka. Available at:
https://www.instaclustr.com/apache-kafka/#apache-
kafka-advantages.

Katsifodimos, A. and Schelter, S. (2016) ‘Apache Flink:
Stream Analytics at Scale’, 2016 IEEE Int. Conference
on Cloud Eng. Workshop (IC2EW), pp. 193–193.

Kirillov, A. (2016) Apache Spark. Available at:
http://datastrophic.io/tag/spark/.

Kleppmann, M. (2018) ‘Apache Samza’, Encyclopedia of
Big Data Technologies. SpringerLink, p. 8.

Kleppmann, M. and Kreps, J. (2015) ‘Kafka, Samza and the
Unix Philosophy of Distributed Data’, IEEE Data
Engineering Bulletin, December 2015, 38(4), pp.4–14.

Kolajo, T., Daramola, O. and Adebiyi, A. (2019) ‘Big data
stream analysis: a systematic literature review’, Journal
of Big Data volume 6, Article number: 47 (2019).

Levy, E. (2019) 7 Popular Stream Processing Frameworks
Compared. Available at: https://www.upsolver.com/
blog/popular-stream-processing-frameworks-compared.

Nasiri, H., Nahesi, S. and Goudarzi, M. (2019) ‘Evaluation
of Distributed Stream Processing Frameworks for IoT
Applications in Smart Cities’, Journal of Big Data
volume 6, Article number: 52 (2019).

Neves, P., Bernardino, J. (2015) ‘Big Data Issues’, In
Proceedings of the 19th International Database
Engineering & Applications Symposium (IDEAS ’15),
ACM, New York, USA, pp. 200–201.

Point, T. (2019) Apache Storm. Available at:
https://www.tutorialspoint.com/apache_storm.

Safaei, A. A. (2017) ‘Real-time processing of streaming big
data’, Real-Time Systems, v. 53, pp. 1–44.

Shaheen, J. A. (2017) ‘Apache Kafka: Real time implemen-
tation with Kafka architecture review’, Int. Journal of
Advanced Science and Technology, pp.35-42.

Shahverdi, E. (2018) ‘Comparative Evaluation for the
Performance of Big Stream Processing Systems’, Int.
Journal of Pure and Applied Mathematics, V. 119 No.
16, pp.937-948.

Shahverdi, E., Awad, A. and Sakr, S. (2019) ‘Big Stream
Processing Systems: An Experimental Evaluation’,
2019 IEEE 35th Int. Conference on Data Eng.
Workshops (ICDEW), pp.53-60.

Shoro, A. G. and Soomro, T. R. (2015) ‘Big Data Analysis:
Apache Spark Perspective’, Int. Journal of Technical
Innovation in Modern Engineering & Science
(IJTIMES), V.4, Issue 5.

Stratosphere, A. F. and Markl, B. V. (2018) ‘Mosaics in big
data’, DEBS ’18: The 12th ACM Int. Conference on
Distributed and Event-based Systems, pp. 7–13.

Sun, G., Song, Y., Gong, Z., Zhou, X. & Bi, Y. (2019)
‘Survey on streaming data computing system’, ACM
TURC 2019: ACM Turing Celebration Conf., pp. 1–8.

Team, D. (2019) Apache Kafka Tutorial. Available at:
https://data-flair.training/blogs/apache-kafka-tutorial/.

Vaidya, N. (2019) Apache Spark Architecture – Spark
Cluster Architecture Explained. Available at:
https://www.edureka.co/blog/spark-architecture/.

Big Data Streaming Platforms to Support Real-time Analytics

433

