loading
Papers Papers/2022 Papers Papers/2022

Research.Publish.Connect.

Paper

Authors: Victor Lyra 1 ; Isabella de Andrade 2 ; João Paulo Lima 2 ; 1 ; Rafael Roberto 1 ; Lucas Figueiredo 3 ; 1 ; João Paulo Teixeira 4 ; 1 ; Diego Thomas 5 ; Hideaki Uchiyama 6 and Veronica Teichrieb 1

Affiliations: 1 Voxar Labs, Centro de Informática, Universidade Federal de Pernambuco, Recife, Brazil ; 2 Departamento de Computação, Universidade Federal Rural de Pernambuco, Recife, Brazil ; 3 Unidade Acadêmica de Belo Jardim, Universidade Federal Rural de Pernambuco, Belo Jardim, Brazil ; 4 Departamento de Eletrônica e Sistemas, Universidade Federal de Pernambuco, Recife, Brazil ; 5 Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan ; 6 NARA Institute of Science and Technology, Nara, Japan

Keyword(s): Tracking, Detection, Multiple Cameras, Pedestrians.

Abstract: 3D pedestrian tracking using multiple cameras is still a challenging task with many applications such as surveillance, behavioral analysis, statistical analysis, and more. Many of the existing tracking solutions involve training the algorithms on the target environment, which requires extensive time and effort. We propose an online 3D pedestrian tracking method for multi-camera environments based on a generalizable detection solution that does not require training with data of the target scene. We establish temporal relationships between people detected in different frames by using a combination of graph matching algorithm and Kalman filter. Our proposed method obtained a MOTA and MOTP of 77.1% and 96.4%, respectively on the test split of the public WILDTRACK dataset. Such results correspond to an improvement of approximately 3.4% and 22.2%, respectively, compared to the best existing online technique. Our experiments also demonstrate the advantages of using appearance information to improve the tracking performance. (More)

CC BY-NC-ND 4.0

Sign In Guest: Register as new SciTePress user now for free.

Sign In SciTePress user: please login.

PDF ImageMy Papers

You are not signed in, therefore limits apply to your IP address 18.191.218.187

In the current month:
Recent papers: 100 available of 100 total
2+ years older papers: 200 available of 200 total

Paper citation in several formats:
Lyra, V.; de Andrade, I.; Lima, J.; Roberto, R.; Figueiredo, L.; Teixeira, J.; Thomas, D.; Uchiyama, H. and Teichrieb, V. (2022). Generalizable Online 3D Pedestrian Tracking with Multiple Cameras. In Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2022) - Volume 5: VISAPP; ISBN 978-989-758-555-5; ISSN 2184-4321, SciTePress, pages 820-827. DOI: 10.5220/0010842800003124

@conference{visapp22,
author={Victor Lyra. and Isabella {de Andrade}. and João Paulo Lima. and Rafael Roberto. and Lucas Figueiredo. and João Paulo Teixeira. and Diego Thomas. and Hideaki Uchiyama. and Veronica Teichrieb.},
title={Generalizable Online 3D Pedestrian Tracking with Multiple Cameras},
booktitle={Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2022) - Volume 5: VISAPP},
year={2022},
pages={820-827},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0010842800003124},
isbn={978-989-758-555-5},
issn={2184-4321},
}

TY - CONF

JO - Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2022) - Volume 5: VISAPP
TI - Generalizable Online 3D Pedestrian Tracking with Multiple Cameras
SN - 978-989-758-555-5
IS - 2184-4321
AU - Lyra, V.
AU - de Andrade, I.
AU - Lima, J.
AU - Roberto, R.
AU - Figueiredo, L.
AU - Teixeira, J.
AU - Thomas, D.
AU - Uchiyama, H.
AU - Teichrieb, V.
PY - 2022
SP - 820
EP - 827
DO - 10.5220/0010842800003124
PB - SciTePress