Cartographic Scale and Minimum Mapping Unit Influence on LULC Modelling

David García Álvarez

Abstract

Two models at two different scales (1:25.000 and 1.100.000) were calibrated using two different Land Use and Land Cover maps at such cartographic scales (SIOSE and CORINE) and with a different Minimum Mapping Unit (0.2-0.5ha and 25ha). Differences between models were assessed through cross-tabulation analysis (quantity and allocation disagreement) and spatial metrics (pattern disagreement). The models results have been very different depending on the scale considered, although most of the disagreement comes from the contrasting input maps. In any case, the scale at which the models were calibrated have proved to influence the pattern modelled and the quantity and allocation of changes.

References

  1. Blanchard, S. D., Pontius Jr., R. G. and Urban, K. M. (2015) 'Implications of Using 2 m versus 30 m Spatial Resolution Data for Suburban Residential Land Change Modeling', Journal of Environmental Informatics, 25(1), pp. 1-13. doi: 10.3808/jei.201400284.
  2. Castilla, G., Larkin, K., Linke, J. and Hay, G. J. (2009) 'The impact of thematic resolution on the patchmosaic model of natural landscapes', Landscape Ecology, 24(1), pp. 15-23. doi: 10.1007/s10980-008- 9310-z.
  3. Delgado Hernández, J. (2016) Methodology of classification extraction from descriptive systems of land cover and land use. doi: 10.13140/RG.2.1.2639.5921.
  4. Hengl, T. (2006) 'Finding the right pixel size', Computers and Geosciences, 32(9), pp. 1283-1298. doi: 10.1016/j.cageo.2005.11.008.
  5. Kelly, M., Tuxen, K. A. and Stralberg, D. (2011) 'Mapping changes to vegetation pattern in a restoring wetland: Finding pattern metrics that are consistent across spatial scale and time', Ecological Indicators. Elsevier Ltd, 11(2), pp. 263-273. doi: 10.1016/j.ecolind.2010.05.003.
  6. Marceau, D. J., others, Ménard, A. and Marceau, D. J. (2005) 'Exploration of spatial scale sensitivity in geographic cellular automata', Environment and Planning B: Planning and Design, 32(5), pp. 693-714. doi: 10.1068/b31163.
  7. Mas, J.-F., Kolb, M., Paegelow, M., Camacho Olmedo, M. T. and Houet, T. (2014) 'Inductive pattern-based land use/cover change models: A comparison of four software packages', Environmental Modelling & Software, 51, pp. 94-111. doi: 10.1016/j.envsoft.2013.09.010.
  8. O'Sullivan, D. and Perry, G. L. W. (2013) Spatial Simulation: Exploring Pattern and Process. Chichester: John Wiley & Sons.
  9. Pan, Y., Roth, A., Yu, Z. and Doluschitz Reiner, R. (2010) 'The impact of variation in scale on the behavior of a cellular automata used for land use change modeling', Computers, Environment and Urban Systems, 34(5), pp. 400-408. doi: 10.1016/j.compenvurbsys.2010.03.003.
  10. Pontius Jr., R. G. and Millones, M. (2011) 'Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment', International Journal of Remote Sensing, 32(15), pp. 4407-4429. doi: 10.1080/01431161.2011.552923.
  11. Rosa, I. M. D., Purves, D., Carreiras, J. M. B. and Ewers, R. M. (2015) 'Modelling land cover change in the Brazilian Amazon: temporal changes in drivers and calibration issues', Regional Environmental Change, 15(1), pp. 123-137. doi: 10.1007/s10113-014-0614-z.
  12. Saura, S. (2004) 'Effects of remote sensor spatial resolution and data aggregation on selected fragmentation indices', Landscape Ecology, 19(2), pp. 197-209. doi: 10.1023/B:LAND.0000021724.60785.65.
  13. Soares, B. S., Cerqueira, G. C. and Pennachin, C. L. (2002) 'DINAMICA - a stochastic cellular automata model designed to simulate the landscape dynamics in an Amazonian colonization frontier', Ecological Modelling, 154(3), pp. 217-235. doi: 10.1016/S0304- 3800(02)00059-5.
  14. Soares-Filho, B. S., Corradi Filho, L., Coutinho Cerqueira, G. and Leite Araujo, W. (2003) 'Simulating the spatial patterns of change through the use of the dinamica model', in Anais XI SBSR, pp. 721-728.
  15. Verburg, P. H., Neumann, K. and Nol, L. (2011) 'Challenges in using land use and land cover data for global change studies', Global Change Biology, 17(2), pp. 974-989. doi: 10.1111/j.1365-2486.2010.02307.x.
  16. Verburg A. Veldkamp, H. P. (2004) 'Projecting landuse transitions at forest in the Philippines at two spatial scales', Landscape Ecology, 19, pp. 77-98. doi: 10.1023/B:LAND.0000018370.57457.58.
  17. Verstegen, J. A., Karssenberg, D., van der Hilst, F. and Faaij, A. (2012) 'Spatio-temporal uncertainty in Spatial Decision Support Systems: A case study of changing land availability for bioenergy crops in Mozambique', Computers, Environment and Urban Systems, 36(1), pp. 30-42. doi: 10.1016/j.compenvurbsys.2011.08.003.
  18. Wainwright, J. and Mulligan, M. (2013) Environmental Modelling: Finding Simplicity in Complexity. Second edi. Edited by J. Wainwright and M. Mulligan. John Wiley & Sons.
  19. Wang, F. and Marceau, D. J. (2013) 'A patch-based cellular automaton for simulating land-use changes at fine spatial resolution', Transactions in GIS, 17(6), pp. 828-846. doi: 10.1111/tgis.12009.
Download


Paper Citation


in Harvard Style

García Álvarez D. (2017). Cartographic Scale and Minimum Mapping Unit Influence on LULC Modelling . In Proceedings of the 3rd International Conference on Geographical Information Systems Theory, Applications and Management - Volume 1: GAMOLCS, ISBN 978-989-758-252-3, pages 327-334. DOI: 10.5220/0006383003270334


in Bibtex Style

@conference{gamolcs17,
author={David García Álvarez},
title={Cartographic Scale and Minimum Mapping Unit Influence on LULC Modelling},
booktitle={Proceedings of the 3rd International Conference on Geographical Information Systems Theory, Applications and Management - Volume 1: GAMOLCS,},
year={2017},
pages={327-334},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0006383003270334},
isbn={978-989-758-252-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 3rd International Conference on Geographical Information Systems Theory, Applications and Management - Volume 1: GAMOLCS,
TI - Cartographic Scale and Minimum Mapping Unit Influence on LULC Modelling
SN - 978-989-758-252-3
AU - García Álvarez D.
PY - 2017
SP - 327
EP - 334
DO - 10.5220/0006383003270334