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Abstract: Two models at two different scales (1:25.000 and 1.100.000) were calibrated using two different Land Use 
and Land Cover maps at such cartographic scales (SIOSE and CORINE) and with a different Minimum 
Mapping Unit (0.2-0.5ha and 25ha). Differences between models were assessed through cross-tabulation 
analysis (quantity and allocation disagreement) and spatial metrics (pattern disagreement). The models 
results have been very different depending on the scale considered, although most of the disagreement 
comes from the contrasting input maps. In any case, the scale at which the models were calibrated have 
proved to influence the pattern modelled and the quantity and allocation of changes. 

1 INTRODUCTION 

Depending on the considered scale, spatial data can 
offer different information about the studied features 
and the relationship between them. In consequence, 
scale influences any analysis of geographical data, 
including Land Use and Land Cover (LULC) 
modelling. 

Usually scale is understood as cartographic scale 
(ratio), extent (map size or study are size) or grain, 
which is sometimes referred as spatial scale 
(O’Sullivan and Perry, 2013). The temporal and 
thematic resolution are also considered part of the 
concept of scale, together with the Minimum 
Mapping Unit (MMU) (Castilla et al., 2009), that is, 
the smallest size area unit to be mapped. A smaller 
MMU means a more detailed map, whereas a bigger 
MMU reduces such detail. In the last case, smaller 
features are not drawn and, consequently, the map 
representation only focus on the dominant features. 

Several papers have addressed the scale 
influence on LULC modelling, focusing on the grain 
or spatial resolution (Blanchard, Pontius Jr. and 
Urban, 2015), extent (Verburg A. Veldkamp, 2004), 
temporal resolution (Rosa et al., 2015) and, in the 
case of CA models, neighbourhood size (Pan et al., 
2010). However, there is a lack of research about 
how the cartographic scale and the Minimum 
Mapping Unit (MMU) of the data vary the model 
results. 

Several studies proved the MMU influence on 
pattern analysis and landscape metrics calculation 
(Saura, 2004; Kelly, Tuxen and Stralberg, 2011). 
This shows how MMU affects GIS analysis and, 
therefore, the need to evaluate this component of 
scale.  

 

Figure 1: Asturias Central Area location. Sources: 
National Topographic Map 1:200.00. 

The objetive of this paper is to study the effects 
of cartographic scale and MMU on LULC modelling 
through the comparison of two models calibrated at 
two different scales (1:100.000 and 1:25.000). We 
study the quantity and allocation disagreements as 
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well as the pattern disagreement consequence of the 
dissimilar data used in the scenarios generated by 
the models. From this point forward, when referring 
to scale we refer to the cartographic scale and 
MMU. 

2 STUDY AREA AND DATA SETS 

2.1 Study Area 

The test area was the Asturias Central Area, the 
most dynamic space of Asturias (Spain) (Fig. 1). 
The main changes are from rural covers to urban and 
industrial spaces. 

2.2 Data Sets 

Two LULC maps at two cartographic scales and 
with different MMU were employed: CORINE 
(1:100.000; 25ha) and SIOSE (1:25.000; 0.5-2ha) 
(Fig. 2). 

Whereas SIOSE was obtained by photo-
interpretation of aerial imagery, CORINE was made 
from a generalization of SIOSE. Therefore, both 
maps refer to the same base dates (2005 and 2011) 

and the differences between them are a result of the 
generalization process, that is a result of the different 
scale rules (MMU). 

There is not a final land cover map for SIOSE. 
Its data base gives information about the proportions 
of every cover that compose every polygon, but 
there is not a unique label that identifies all 
polygons. Therefore, we carried out a generalization 
of that statistical information in a way that the 
geometry (polygons) is defined by a unique cover 
(label). This was made through the implementation 
of translation rules according to the proposal of 
Delgado Hernández (2016). 

To make comparable the two maps, they were 
reclassified according to the same legend. Although 
coarser scales usually tie in with simpler thematic 
resolutions, since our objective is to analyse the 
influence of cartographic scale and MMU on LULC 
modelling, we have kept the thematic resolution 
constant. Otherwise, the results would show the 
general influence of all components of scale on 
LULC models. Moreover, both map cartographic 
scales (1:25.000 and 1:100.000) are regional. 
Accordingly, both fit well with the proposed legend. 

Finally, both data sets were rasterized at 12.5m 
(SIOSE) and 50m (CORINE) following the criteria 
proposed by Hengl (2006) in the search for the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2: Input maps comparison for an example area (Gijón). Sources: SIOSE (2011) and CORINE (2012) 
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minimum influence of the rasterization on our 
analysis. That is why we have not used the reference 
CORINE resolution (100m). 

3 METHODS 

3.1 Model Calibration and Simulation 

Two models were implemented in Dinamica EGO, 
one for SIOSE (1:25.000 model) and another one for 
CORINE (1:100.000 model). Dinamica is a 
recognized stochastic cellular automata model, 
which is in addition very flexible (Mas et al., 2014). 
This allowed to set up both models according to the 
same criteria.  

Two functions compose Dinamica EGO: 
expander and patcher. The expander function models 
new pixels as an expansion of previous patches, 
whereas the patcher function models new pixels as a 
new patch, isolated from previous patches of the 
same class. More information about these functions 
and the model architecture can be found in Soares, 
Cerqueira and Pennachin (2002). 

Dinamica Ego models transitions. Therefore, 
different transitions were selected for each model 
according to the changes measured by each pair of 
input maps (Table 1). Only those transitions with a 
minimum quantity of changes (>10ha) were 
considered. Like the modelling objective is to study 
how artificial surfaces expand, there were selected 
only those transitions which transition to an artificial 
cover. 

Drivers were chosen according to expert criteria 
(interviews) and literature review. When a 
correlation greater than 0.5 between two drivers was 
detected, one of them was removed from the model. 

The driving forces included in the model are: 
roads, train stations, residential and industrial 
buildings, coastline, leisure facilities, population 
density, slopes, planning, substratum and industrial 
ports. When possible, drivers were obtained from 
sources with similar scales to the implemented 
models (1:25.000 and 1:100.000). 

Driving forces relation with changes was 
calibrated through the Weights of Evidence method, 
which is part of Dinamica EGO. The two models 
were run with the same weights of evidence, 
according to expert criteria. This is possible because 
Dinamica allows the user to modify manually the 
obtained weights. 

The model parameters (size and variance of new 
patches) were established according to real changes 
(2005-2011). Finally, when some strange or 

incorrect behaviour was detected, it was corrected 
manually. Thus, it was applied a manual and expert 
calibration. 

Once the model was calibrated, a simulation was 
run to the year 2020, which fits well with the short 
calibration period (six years). Transition rates for the 
simulation year (2020) are a modification of the 
rates of change for the calibration period according 
to real trends of change for the modelled period, as 
pointed out by experts. 

Table 1: In grey, transitions modelled by the two models. 
In white, transitions modelled by only one. 

From To 
Construction sites Continuous urban 

fabric Pastures 
Construction sites Discontinuous urban 

fabric Pastures 
Construction sites 

Industrial and 
commercial units 

Arable lands 
Pastures 

Complex cultivation patterns 
Land principally occupied by 

agriculture 
Forests 

Natural grasslands 
Scrubland 

Construction sites Infrastructures 
Forests 

Mineral extraction 
sites 

Scrubland 
Arable land 

Pastures 
Dump sites 

Forests 
Dump sites 

Construction sites 

Arable land 
Pastures 

Complex cultivation patterns 
Land principally occupied by 

agriculture 
Forests 

Natural grasslands 
Scrubland 

3.2 Data Analysis and Assessment 

Disagreements were calculated for the input maps 
and for the changes simulated, that is without 
considering the permanent areas. Disagreements for 
input maps give us information about how the 
difference of the initial data can explain the results 
generated by the models. 

Quantity and allocation disagreements were 
analysed through the matrix proposed by Pontius Jr. 
and Millones (2011). For the pattern disagreement, a 
series of spatial metrics were calculated through 
FRAGSTATS 4.2. These are: Number of Patches 
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(NP), Area-Weighted Mean Patch Area (AWMPA) 
and Patch Cohesion Index (PCI). Their selection was 
based in how much information they provided, that 
is how well they express the difference between the 
compared maps. 

4 RESULTS 

4.1 Quantity and Allocation 
Disagreement 

There is an important difference in the quantity and 
allocation of classes between the two input maps 
(SIOSE and CORINE) because of their different 
scale. Only around the 44% of the area in one map 
corresponds to the same category in the other map 
(Fig. 3). 

In consequence, each map measures different 
types and quantity of changes. This has resulted in 
the consideration of different transitions for the two 
models (Table 1). Also, like the areas where every 
class is located are different (25% allocation 
disagreement), the simulated changes will locate in a 
different position. Since there are two models which 
simulate different transitions and the location of the 
classes where the transition takes place are probably 
different, there is a low probability that the changes 
simulated by both models would be similar. 

 

Figure 3: Overall agreement bars for input and simulated 
maps. 

This is what Figure 3 tell us:  the only agreement 
between simulated changes by the two models is due 
to chance. Depending on the input maps used, the 
model produces a very different result. The 95% of 
the changes simulated by the two models are 
different (Fig. 4) 

Figure 4 allows to see the quantity disagreement 
between the simulated changes depending on the 
class considered. Each confusion bar is composed by 
various sections, which represent the proportion of 
pixels that are allocated to a different class on the 
other simulation. When the section for any particular 
class (e.g. continuous urban fabric) is larger in one 
bar than on the other, there is a quantity 
disagreement, which is proportional to the difference 
between the two sections in both bars. 

 

Figure 4: The first bar depicts the simulated areas in the 
1:100.000 model that are not the same in the 1:25.000 
model. The second bar depicts the simulated areas in the 
1:25.000 model that are not the same in the 1:100.000 
model. 

The simulated changes are greater in the 
1:25.000 model than in the 1:100.000 model: the 
size of the confusion bar for permanence is greater 
in the 1:100.000 model than in the 1:25.000 model 
(Fig. 4). Hence, regarding the total area simulated as 
change by both models, in the 1:100.000 model only 
the 38% of the area is change, whereas in the 
1:25.000 model that is true for the 68% of the area. 
This is because, due to the smaller MMU, SIOSE 
allows to detect small changes. Whereas only 
changes over 5ha are drawn in CORINE, SIOSE 
represents every change bigger than 0.4ha. 
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The quantity disagreements at the class level are 
related to the quantity disagreements between input 
maps. E.g. there is more quantity disagreement for 
continuous urban fabric in the 1:25.000 model than 
in the 1:100.000 model because the area of the 
continuous urban fabric is bigger in the input maps 
of the first model (SIOSE) than in the input maps of 
the second model (CORINE). 

 

Figure 5: Agreement bars per category for simulated 
changes in the two models (1:100.000 and 1:25.000). 

Like the only agreement between simulated 
changes is due to chance, the allocation 
disagreement bars at the class level don´t give us 
extra information (Fig. 5). Most of the area in the 

bars are disagreements and, therefore, their 
information corresponds to the disagreements 
showed by Figure 4. 

No allocation agreement is achieved because, 
whereas the drivers are the same in the two models, 
the candidate areas to transition are located in 
different places. The bigger the quantity and 
allocation disagreement between input maps, the 
bigger the probability that a same pixel is located in 
a different place in the two maps and, therefore, the 
bigger the probability that the candidate pixel to 
transition would be different in the two models. 

4.2 Pattern Disagreement 

The pattern simulated by the two models is related to 
the input maps pattern. However, when one 
compares real changes (2005-2011) to simulated 
changes, the results show how the model behaves 
similarly independent of the considered scale. 

Despite of the bigger MMU for CORINE (25ha) 
than for SIOSE (0.5-2ha), there are not big 
differences in the fragmentation of changes for the 
1:100.000 and 1:25.000 models (Table 2). In fact, 
some classes show a bigger area-weighted mean 
patch area (polygon mean area corrected by the 
polygon size) for the model at a finer scale than for 
the model at a coarser scale. Likewise, the number 
of changing patches increases with the simulation 
for the coarser model, whereas it falls for the finer 
model. 

Whereas the effect of the MMU rule is evident 
for the real changes (input maps cross tabulation), 
we can´t perceive it in the simulated changes (Table 

Table 2: Spatial metrics at the class level for real (2005-2011) and simulated (2011-2020) changes. 

Simulated changes 
2011-2020 

Number of pathes Area-weighted mean patch area Patch cohesion index 
1:25 1:100 1:25 1:100 1:25 1:100 

Continuous urban fabric 44 13 10.7344 3.3967 95.0723 71.0631 
Discontinuous urban fabric 79 88 11.9334 16.5856 93.7738 80.4932 

Industrial or commercial units 81 42 14.9641 8.1407 95.7527 79.9843 
Infrastructures 15 4 14.5344 32.3644 96.4041 92.4082 

Mineral extraction sites 35 5 1.9123 3.537 90.3935 72.052 
Dump sites 11 4 7.7488 5.1667 94.9689 77.3581 

Construction sites 118 26 3.3104 2.9085 90.2173 63.8639 
Input maps changes 

2005-2011 
Number of pathes Area-weighted mean patch area Patch cohesion index 

SIOSE CORINE SIOSE CORINE SIOSE CORINE 
Continuous urban fabric 72 4 19.5006 12.5078 96.4369 86.0809 

Discontinuous urban fabric 130 19 11.6396 43.5088 93.5797 92.4059 
Industrial or commercial units 130 23 26.328 34.0165 95.7127 89.8172 

Infrastructures 8 1 13.3087 35.75 96.6727 93.0449 
Mineral extraction sites 64 2 5.3172 18.8616 92.89 88.8021 

Dump sites 34 8 5.578 7.3148 93.4537 80.6492 
Construction sites 95 10 37.7259 83.333 97.3597 95.4769 

Cartographic Scale and Minimum Mapping Unit Influence on LULC Modelling

331



 

2). That is because the models work at the pixel 
level, regardless of the MMU. Since the pixel size is 
much smaller than the MMU (156m2 (1:25.000) vs 
0.2-0.5ha (SIOSE) and 0.25ha (1.100.000) vs 25ha 
(CORINE)), there is not much difference in the 
model behaviour because of the MMU. 

The bigger the contrast between the MMU and 
the pixel size, the more evident the effects of the 
model behaviour in the resultant pattern. That is the 
reason why the 1:100.000 model show a more 
contrasted behaviour regarding to real changes than 
the 1:25.000 model. 

Like there are not MMU rules, the connection or 
aggregation of simulated changes (patch cohesion 
index) is smaller than the aggregation of real 
changes in both models, although the contrast is 
again more pronounced for the coarse scale model 
than for the fine scale one. 

5 DISCUSSION 

5.1 Input Maps 

Input maps play an essential role on the model 
results. Therefore, knowing the uncertainty of the 
data sets which we are using it is critical in 
modelling research (Verburg, Neumann and Nol, 
2011), since most of the model conclusions will be a 
consequence of how these maps reflect reality. 

The results have showed important differences 
between input maps (SIOSE and CORINE). This has 
been a great limitation for the models agreement: the 
dissimilar quantities and allocations of the same 
categories turn out on different possibilities to 
allocate the same transitions. 

Working with maps at lower thematic resolutions 
can help to achieve a higher agreement between 
input maps. Thus, uncertainty is usually lower at 
coarser scales since local changes are omitted 
(Verstegen et al., 2012). 

5.2 Model Calibration 

The finer the scale considered, the bigger the 
information that input maps provide. Accordingly, 
maps at finer scales (SIOSE) show a bigger quantity 
and types of changes than maps at coarser scales 
(CORINE). In consequence, transition rates 
(estimated quantities of changes) and potential 
transitions (type of changes modelled) are different 
depending on the scale of the model: the quantity of 
changes and the number of transitions are bigger for 
the 1:25.000 model than for the 1:100.000 model. 

The provision of more information about reality 
can be seen as an advantage because we can 
understand better the dynamics of our study area. 
However, it is also a limitation when we need to 
manage tons of complex information to calibrate the 
model. At finer scales, transitions rarely occur alone 
and different transitions happen together. The 
patterns of change are also more complex. 

When using fine scale maps, we also need to pay 
attention to the possible noise in the data. The finer 
the scale considered, the greater the possibility to 
find noise (small changes that are not real changes). 
This noise will influence the results of our model. 

Thus, the modeller has to find a balance between 
data detail and model complexity. More detail but 
much more complexity is worse than less detail and 
a very simple model (Wainwright and Mulligan, 
2013). The perfect balance would be a manageable 
complexity level which is in accordance with the 
detailed added to the model. 

Also, depending on the dynamics that the 
modeller can explain, a finer or coarser scale should 
be chosen. The 1:100.000 and 1:25.000 models were 
calibrated using the same driving forces, despite of 
the fact that their input maps show different 
dynamics.  

The SIOSE maps show small changes, because 
of the small MMU, that are not correctly modelled 
since there are not additional drivers to explain 
them. For certain classes, like dump sites, the 
1:25.000 model identifies more changes. However, 
most of these new changes come from processes that 
are different to the processes which cause the 
changes identified by the 1:100.000 model. Like we 
model in both cases the changes with the same 
drivers, the 1:25.000 model extrapolates changes 
from one process to changes from other processes. 

If there is only information for the main 
dynamics of the study area, a coarse scale model, 
like the 1:100.000 model, is advisable. However, if 
we can explain also the small changes which are 
visible in SIOSE, the 1:25.000 model is maybe the 
best option. 

Nevertheless, CORINE maps only reflects the 
bigger changes in the Asturias Central Area. 
Because of the scarce dynamics of this area when 
compared with metropolitan areas or other big cities, 
the changes showed by CORINE are few and with 
very specific locations. Therefore, it is difficult to 
extract an organic growing pattern from that data. 

Consequently, depending on the area studied and 
its characteristics, most of the dynamics can only 
emerge at specific scales. If the urban sprawling 
comes from small urban patches, a fine scale map is 

GAMOLCS 2017 - International Workshop on Geomatic Approaches for Modelling Land Change Scenarios

332



 

needed. However, in the opposite case, a coarse map 
can be sufficient. 

Therefore, every scale has some advantages and 
limitations. The modeller mission is, as pointed out 
previously, to find a balance between all the 
requirements. 

5.3 Simulations 

The two scenarios generated by the two calibrated 
models are very different. The agreement between 
them is only by chance. Most of this difference 
comes from the contrasted information in the input 
maps (quantity and allocation disagreement). The 
stochastic component of the model must have 
influenced the results also. Nevertheless, the scale 
and resolution at which the model is set up also have 
played a role in the resultant scenario. 

Grain is considered as spatial scale and it is 
related to the others concepts of scale: small MMU 
imply finer spatial resolution than larger units. Then, 
models at finer scales (1:25.000, 12.5m) simulate 
more pixels than models at coarser scales 
(1:100.000, 50m). As a result, the quantity of pixels 
to allocate is not the same for models at different 
scales and resolutions: the bigger the resolution, the 
bigger the quantity of pixels to allocate and the more 
likely the model to make a mistake. Therefore, the 
probability to make a mistake is greater for finer 
scale models than for coarser scales models. 

Similar studies which have focused the analysis 
on the influence of the spatial resolution on LULC 
modelling have reached similar conclusions 
(Marceau et al., 2005; Pan et al., 2010). 

In addition, there is an incoherence between the 
model resolution (12.5m and 50m) and the MMU 
(0.2-0.5ha and 25ha). This makes the pattern of the 
simulated scenarios more fragmented than the initial 
pattern, especially when we are working with maps 
that have big MMU, like CORINE. The model 
allocates changes as pixels whereas input maps only 
show changes that meet the MMU. In consequence, 
the changes allocated by the model will be smaller 
than the changes measured by the input maps. 

Model validation through techniques that 
compare the generated scenario with the real map 
for the same date are not completely reliable. 
Whereas the scenario doesn´t meet with the MMU 
rules, the reference map does. Consequently, they 
are never going to show the same information. A 
real change that only affects a pair of pixels won´t 
be reflected in the reference maps because it doesn´t 
comply with the minimum required size. However, 
the model does can simulate correctly that change. 

Dinamica EGO allows the user to achieve the 
wished simulation pattern through the functions 
expander and patcher. One can decide how much 
pixels will be allocated as expansion of previous 
patches and how much pixels will conform new 
patches for every simulated category. The user can 
decide also, for every transition, the mean and 
variance of the new patches generated. 

Although that seems a solution for the proposed 
problem (Soares-Filho et al., 2003), that did not 
work for our study area. The mean and variance 
parameters are only considered when there is an 
enough variety of candidate areas of different sizes 
for a specific transition. A candidate area is possible 
when inside a polygon of the destination category of 
the transition there is a suitable area, that is an area 
that, according to the model driving forces, has a 
value above 0. 

Suitable areas for transitions are going to be 
smaller in models at finer scales (1:25.000) than in 
models at coarser scales (1:100.000) because of the 
respective size of the polygons in each model 
(MMU). Therefore, models at finer scales (smaller 
MMU), as far as their input maps are composed by 
small polygons, find more difficult to vary the 
desired pattern than models at coarser scales (bigger 
MMU). 

Patch-based models can be a solution for all 
these problems (Wang and Marceau, 2013). 

4 CONCLUSIONS 

There is an important source of uncertainty 
consequence of the chosen scale in LULC 
modelling, as it is in any GIS analysis. 

Firstly, this uncertainty comes from the input 
maps dissimilarity. LULC data for the same area 
offer different information depending on the 
cartographic scale and minimum mapping unit 
(MMU). The input maps selected, as far as they 
show a specific representation of a given area, will 
provide different input parameters to the LULC 
model. 

Making these maps simpler (e.g. decreasing 
thematic resolution) can reduce the dissimilarity 
between them at the expense of model complexity. 

Secondly, uncertainty comes from the scale at 
which the model is set up. Modelled patterns are 
dependent on the spatial resolution, which is linked 
with the MMU: small MMU imply finer spatial 
resolution than larger units. The quantity and detail 
of changes also vary with the scale. Models at finer 
scales manage more information than models at 
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coarser scales, although they are more complex to 
calibrate since the greater the quantity of 
information, the higher the model complexity. How 
the modeller manages this complexity can introduce 
additional uncertainty in the model. Therefore, the 
user must strike a balance between model 
complexity and explanatory power. 
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