Antonios Karatzoglou, Julian Janßen, Vethiga Srikanthan, Yong Ding, Michael Beigl


Energy efficiency and thermal comfort depict two key topics in indoor climate controlling domain. HVAC systems are one of the biggest energy consumers in nowadays’ households and yet they have difficulties in reaching the users’ optimal comfort. We are presenting SVReCLCE, a proactive two-fold climate controlling approach that takes explicitly both energy consumption, as well as comfort in consideration. A user study in an office environment shows that our solution can in practice achieve up to 49% energy savings by keeping the personal comfort level high at the same time. Therefore, SVReCLCE sets a solid basis for future work in the field of climate control for low-energy buildings.


  1. Abe, S. (2005). Support vector machines for pattern classification , volume 53. Springer.
  2. Deng, C., Xie, S., Wu, J., and Shao, X. (2014). Position error compensation of semi-closed loop servo system using support vector regression and fuzzy pid control. The International Journal of Advanced Manufacturing Technology, 71(5-8):887-898.
  3. Dentel, A. and Dietrich, U. (2013). behaglichkeit-komfort in gebäuden.
  4. Edwards, R. E., New, J., and Parker, L. E. (2012). Predicting future hourly residential electrical consumption: A machine learning case study. Energy and Buildings, 49:591-603.
  5. Ellis, C., Hazas, M., and Scott, J. (2013). Matchstick: A room-to-room thermal model for predicting indoor temperature from wireless sensor data. In Proceedings of the 12th international conference on Information processing in sensor networks, pages 31-42. ACM.
  6. Fanger, P. (1970). Thermal comfort: Analysis and applications in environmental engineering. Danish Technical Press.
  7. Feldmeier, M. and Paradiso, J. A. (2010). Personalized hvac control system. In Internet of Things (IOT), 2010, pages 1-8. IEEE.
  8. Kalz, D., Hölzenbein, F., Pfafferott, J., and Vogt, G. (2013). Nutzerzufriedenheit mit dem thermischen komfort in bürogebäuden mit umweltenergiekonzepten. Bauphysik, 35(6):377-391.
  9. Koehler, C., Ziebart, B. D., Mankoff, J., and Dey, A. K. (2013). Therml: occupancy prediction for thermostat control. In Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing, pages 103-112. ACM.
  10. Megri, A. C. and El Naqa, I. (2016). Prediction of the thermal comfort indices using improved support vector machine classifiers and nonlinear kernel functions. Indoor and Built Environment, 25(1):6-16.
  11. Oldewurtel, F., Parisio, A., Jones, C. N., Gyalistras, D., Gwerder, M., Stauch, V., Lehmann, B., and Morari, M. (2012). Use of model predictive control and weather forecasts for energy efficient building climate control. Energy and Buildings, 45:15-27.
  12. Scott, J., Bernheim Brush, A., Krumm, J., Meyers, B., Hazas, M., Hodges, S., and Villar, N. (2011). Preheat: controlling home heating using occupancy prediction. In Proceedings of the 13th international conference on Ubiquitous computing, pages 281-290. ACM.
  13. Yun, J. and Won, K.-H. (2012). Building environment analysis based on temperature and humidity for smart energy systems. Sensors, 12(10):13458-13470.

Paper Citation

in Harvard Style

Karatzoglou A., Janßen J., Srikanthan V., Ding Y. and Beigl M. (2017). Comfort-efficiency-equilibrium . In Proceedings of the 6th International Conference on Smart Cities and Green ICT Systems - Volume 1: SMARTGREENS, ISBN 978-989-758-241-7, pages 258-265. DOI: 10.5220/0006308002580265

in Bibtex Style

author={Antonios Karatzoglou and Julian Janßen and Vethiga Srikanthan and Yong Ding and Michael Beigl},
booktitle={Proceedings of the 6th International Conference on Smart Cities and Green ICT Systems - Volume 1: SMARTGREENS,},

in EndNote Style

JO - Proceedings of the 6th International Conference on Smart Cities and Green ICT Systems - Volume 1: SMARTGREENS,
TI - Comfort-efficiency-equilibrium
SN - 978-989-758-241-7
AU - Karatzoglou A.
AU - Janßen J.
AU - Srikanthan V.
AU - Ding Y.
AU - Beigl M.
PY - 2017
SP - 258
EP - 265
DO - 10.5220/0006308002580265