MOBILE ROBOT PREDICTIVE TRAJECTORY TRACKING

Martin Seyr, Stefan Jakubek

Abstract

For a two-wheeled differentially driven mobile robot a trajectory tracking concept is developed. A trajectory is a time-indexed path in the plane, i.e. in the three-dimensional configuration space consisting of position and orientation. Due to the nonholonomic nature of a rolling wheel, the system cannot be stabilized by a continuous time-invariant feedback or by feedback linearization. A novel approach taken in this paper to solve the nonholonomic control problem consists of nonlinear predictive control in conjunction with linear state space control with integration of the control error. Based on a Gauss-Newton algorithm, predicted future position errors are minimized by numerical computation of an optimal sequence of control inputs using prespecified shape functions.

References

  1. Bloch, A. and Drakunov, S. (1994). Stabilization of a Nonholonomic System via Sliding Modes. IEEE Conference on Decision and Control.
  2. Brockett, R. W. (1983). Differential Geometric Control Theory, chapter Asymptotic Stability and Feedback Stabilization. Birkhauser.
  3. Hespanha, J. P. and Morse, A. S. (1996). Stabilization of Nonholonomic Integrators via Logic-Based Switching. Automatica's Special Issue on Hybrid Systems, to appear.
  4. Isermann, R. (1987). Springer.
  5. Digitale Regelsysteme, volume 1.
  6. Isidori, A. (1989). Nonlinear Control Systems. Springer.
  7. Mayne, D. Q., Rawlings, J. B., Rao, C. V., and Scokaert, P. O. M. (2000). Constrained Model Predictive Control: Stability and Optimality. Automatica, (36):789- 814.
  8. Norgaard, M., Ravn, O., and Poulsen, N. K. (1999). Neural Networks for Modelling and Control of Dynamic Systems. Springer.
  9. Oriolo, G., De Luca, A., and Vendittelli, M. (2002). WMR Control Via Dynamic Feedback Linearization: Design, Implementation, and Experimental Validation. IEEE Transactions on Control Systems Technology, 10(6):835-851.
  10. Samson, C. (1995). Control of Chained Systems. Application to Path Following and Time-Varying PointStabilization of Mobile Robots. IEEE Transactions on Automatic Control, 40(1):64-77.
  11. Seyr, M. and Jakubek, S. (2005). Neural Network Predictive Trajectory Tracking of an Autonomous Two-Wheeled Mobile Robot. In IFAC05 conference proceedings.
Download


Paper Citation


in Harvard Style

Seyr M. and Jakubek S. (2005). MOBILE ROBOT PREDICTIVE TRAJECTORY TRACKING . In Proceedings of the Second International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 972-8865-30-9, pages 112-119. DOI: 10.5220/0001184001120119


in Bibtex Style

@conference{icinco05,
author={Martin Seyr and Stefan Jakubek},
title={MOBILE ROBOT PREDICTIVE TRAJECTORY TRACKING},
booktitle={Proceedings of the Second International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2005},
pages={112-119},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001184001120119},
isbn={972-8865-30-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Second International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - MOBILE ROBOT PREDICTIVE TRAJECTORY TRACKING
SN - 972-8865-30-9
AU - Seyr M.
AU - Jakubek S.
PY - 2005
SP - 112
EP - 119
DO - 10.5220/0001184001120119