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Abstract: For a two-wheeled differentially driven mobile robot a trajectory tracking concept is developed. A trajectory
is a time-indexed path in the plane, i.e. in the three-dimensional configuration space consisting of position and
orientation. Due to the nonholonomic nature of a rolling wheel, the system cannot be stabilized by a contin-
uous time-invariant feedback or by feedback linearization. A novel approach taken in this paper to solve the
nonholonomic control problem consists of nonlinear predictive control in conjunction with linear state space
control with integration of the control error. Based on a Gauss-Newton algorithm, predicted future position
errors are minimized by numerical computation of an optimal sequence of control inputs using prespecified
shape functions.

1 INTRODUCTION

The basic task in mobile robot motion control is to ac-
curately follow a given trajectory. The error between
the present posturex(t) = [x(t) y(t) ϕ(t)]T and the
reference trajectory is to be minimized.

Considerable research has been done on trajectory
tracking control of the unicycle-type mobile robot. Its
kinematics are a classical example of a nonholonomic
nonlinear control system, the nonholonomic integra-
tor (NHI), in somewhat different form also known as
Brockett- or Heisenberg-system.

It was first shown by (Brockett, 1983), that this sys-
tem cannot be stabilized by continuous, time-invariant
feedback, although it is controllable in a nonlinear
sense.

Furthermore, it can be shown using a methodology
by (Isidori, 1989), that the NHI cannot be feedback-
linearized.

Therefore, various control concepts trying to cir-
cumvent the aforementioned limitations have been
presented in recent years. Among the major groups
of approaches are sliding-mode control, e.g. (Bloch
and Drakunov, 1994), time-varying feedback laws,
e.g. (Samson, 1995), hybrid control laws, e.g. (Hes-
panha and Morse, 1996) and dynamic feedback lin-
earization, e.g. (Oriolo et al., 2002).

None of the mentioned publications deal with the

problem of non-zero side-slip angle. Some do not
take the dynamics of the system into account, they
are only concerned with its kinematics.

A drawback inherent to many of the concepts
present in the literature is a singularity in the con-
trol law occurring at zero velocity, e.g. (Oriolo et al.,
2002).

In the present paper, a novel approach is presented
employing numerical optimization of open loop con-
trol rather than any explicit feedback control law.
Therefore, the aforementioned restrictions do not ap-
ply here.

This concept is made possible by the robot’s out-
standing on-board calculation capacity provided by a
microcontroller and a digital signal processor.

2 THE PLANT: AN
AUTONOMOUS
TWO-WHEELED MOBILE
ROBOT

The robot, Fig. 1, has two wheels with rubber tires
and two felt shoes, one at the front and one at the rear
to stabilize it around the pitch axis. It fits into a cuboid
with a 0.075m square footprint. The two wheels are
supported by ball bearings and powered by two indi-
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vidual DC-motors. A microcontroller produces two
pulse-width modulated (PWM) constant voltage sig-
nals, which are amplified by a dual full bridge driver.
The amplified signals drive the two DC-motors.
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Roll-axis
x

y

z

Figure 1: Autonomous mini-robot Tinyphoon,
http://www.tinyphoon.com

Nonlinearities originate from variable switching
times and dead zones in the amplifier circuit, fric-
tion characteristics of bearings and gearboxes and
the wheel slip dynamics. The kinematics of a two-
wheeled mobile robot are equivalent to those of a sin-
gle rolling wheel. Therefore, this system is often re-
ferred to as the unicycle-type mobile robot.
The dynamics of the entire system will be partitioned
into those of the path velocity and yaw angular ve-
locity, which can be linearized to form a two-input-
two-output linear state space system, and the nonlin-
ear nonholonomic kinematics.

2.1 Velocity dynamics

To obtain a linearization of the velocity dynamics, a
number of simplifications are made:

1. The slip-dynamics are omitted,

2. the side-slip velocityvn and the tangential veloc-
ity vt are combined to an effective track speedv,
Fig. 2,

v =
√

v2
t + v2

n signvt =
vt

cos α
, (1)

3. the motor characteristic is linearized using least
squares with a bilinear regressor function.

The result is a linear continuous-time state space
system with state vectorv := [v ω]T and input vector
u := [rPWM,r rPWM,l]

T ,

a

v

vn

vt

ω

α

x

y

θ

ϕ

Figure 2: Kinematics of a two-wheeled mobile robot under
consideration of side slip and tangential wheel slip

v̇ =

[
a 0
0 c

]

v +

[
b b
d −d

]

u, (2)

where the parameters have been collected to form
the constantsa, b, c andd, andrPWM,r andrPWM,l

denote the PWM-duty cycles of the right and left mo-
tor input voltages.

2.2 Kinematics

The kinematics of the unicycle-type mobile robot are
given by

ẋ = v cos(ϕ + α)

ẏ = v sin(ϕ + α)

ϕ̇ = ω, (3)

wherex andy denote the inertial coordinates and
ϕ denotes the inertial attitude angle of the robot.
From Fig. 2 it can be seen that

θ = ϕ + α, (4)

whereθ denotes the angle of the tangent to the ac-
tual path.

3 CONTROL CONCEPT

Since the velocity dynamics and the kinematics can
be solved consecutively (i.e. the result of the veloc-
ity dynamics serves as input into the kinematics, but
there is no influence of the positions on the veloci-
ties), the application of a cascading control scheme is
straightforward.
The chosen scheme employs a linear state feedback
law with integration of the velocity errors to control
the velocitiesv, in the following referred to as the
inner loop, and a nonlinear predictive controller us-
ing the closed loop dynamics of the inner loop in the
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prediction of the positionsx (in the following: outer
loop), Fig. 3.

Predictor State-space

xref (k . . . k + hp) vref (k) x(k)

v(k)

Closed loop dynamics

Figure 3: Cascaded control scheme,hp denotes the predic-
tion horizon

4 CONTROL OF THE INNER
LOOP

4.1 Discretization

First, the continuous-time state space representation
of the robot’s dynamics is discretized assuming that
a zero-order hold acts at the input. Theoretical back-
ground can be found e.g. in (Isermann, 1987).
The system (2) is then written as

v(k+1) =

[
p 0
0 r

]

︸ ︷︷ ︸

A

v(k)+

[
q q
s −s

]

︸ ︷︷ ︸

B

u(k), (5)

wherep, q, r, s are real-valued constants andk de-
notes the integer sampling instants.

4.2 Extended system

The control algorithm’s calculation time must be ex-
pected to consume a considerable portion of the sam-
pling interval, therefore the common assumption, that
the output of a control algorithm is available instanta-
neously, does not hold.
On the contrary, it must be assumed, that the output of
the controller can only be applied at the beginning of
the next sampling interval. Basically, this would lead
to a control law of the form

u(k) = f(v(k − 1), vref(k − 1)), (6)

i.e. a one-step deadtime in the control law itself
unless a prediction forv(k) is used.

Therefore, the order of the system is deliberately
increased by using past values as additional states, so
as to be able to usev(k − 1) in the control law for
u(k).

In the outer loop, a prediction for the future
velocities is calculated anyway (indicated with aˆ ).
Practical tests show, however, that it is still advisable
to use the extended system for controller design,
since a feedback law based entirely on predicted
values tends to destabilize quickly.

After introducing the integrated control errorsq as
additional states, the extended system is written as

[
v(k + 1)

v(k)
q(k)

]

=

[
A 0 0

I 0 0

0 −I I

][
v̂(k)

v(k − 1)
q(k − 1)

]

+

+

[
B
0

0

]

u(k) +

[
0

0

I

]

vref(k − 1). (7)

The static state feedback control law has the form

u(k) = K
︸︷︷︸

2×6

[
ê(k)

e(k − 1)
−q(k − 1)

]

︸ ︷︷ ︸

6×1

, (8)

whereK denotes the feedback gain matrix, calcu-
lated using standard pole assignment procedures.

5 CONTROL OF THE OUTER
LOOP

The principle of nonlinear predictive control using a
Gauss-Newton-optimization algorithm is taken from
(Norgaard et al., 1999), where this procedure is ap-
plied to SISO-systems (single-input-single-output),
which are dynamically modeled by recurrent multi-
layer perceptron networks (MLP).
The algorithm is adapted to use a nonlinear MIMO-
state space representation instead of the MLP-
network.
A similar procedure for a MIMO-neural network was
used in (Seyr and Jakubek, 2005).

5.1 Discretization of the kinematic
model

First, the continuous time nonlinear state space sys-
tem (3) is discretized using a simple forwards differ-
ence approximation (explicit Euler) for the first order
derivatives,

ẋ(k) =
x(k + 1) − x(k)

Ts
,

analogously fory andϕ.
Then the system (3) can be written as
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x(k + 1) = Tsv(k) cos[ϕ(k) + α(k)] + x(k)

y(k + 1) = Tsv(k) sin[ϕ(k) + α(k)] + y(k)

ϕ(k + 1) = Tsω(k) + ϕ(k). (9)

5.2 Cost function

Predictive control is based on the minimization of
a scalar quadratic cost function containing predicted
future position errorsP and future control variables
V ref during every sampling interval, here denoted for
a system with three outputs (x := [x y ϕ]T ) and two
control variables (vref := [vref ωref ]

T ). For the two
control variables, shape functions are chosen. The
shape of the future control variables is then adjusted
using two parameters each. The cost as a function of
the form-parametersc reads

V =
1

2hp
P T LP +

1

2
cT Rc, (10)

where

P =

















xref(k + 3) − x(k + 3)
xref(k + 4) − x(k + 4)

...
yref(k + 3) − y(k + 3)

...
yref(k + hp) − y(k + hp)

...
ϕref(k + hp) − ϕ(k + hp)

















.

The structure of the shape functions forvref and
ωref is identical and given by

v, ωref(k) = c1,3 + c2,4 (1 − exp(−κkTs))
︸ ︷︷ ︸

f(k)

, (11)

where the curvature of the shape function can be
adjusted by the form factorκ: from almost linear
(κ <<) to steep at the beginning and flat at the
end (κ >>), which influences the bandwidth of the
system.
Additionally, the second partf(k) is scaled to ensure
comparable influence ofc2,4 when using different
values forκ.

• The cost functionV is evaluated and minimized
during each sampling interval.

• Future reference valuesxref up to the prediction
horizonhp must be known.

• The form-parametersc, shaping thevref up to the
control horizonhu (here:hu = hp − 2), are opti-
mized using (10).

• The weight matricesL ∈ IR3(hp−2)×3(hp−2) and
R ∈ IR4×4 determine to what extent the future con-
trol variables and the future control errors are con-
sidered.

From measurement data, the current posture
[x(k) y(k) ϕ(k)]T ) and velocities[v(k) ω(k)]T are
calculated.
Using the first and the last line of the closed loop state
space representation of the inner loop

v(k + 1) =

= [ A − BK1 −BK2 −BKI ]

[
v(k)

v(k − 1)
q(k − 1)

]

+

+ [ BK1 BK2 ]

[
vref(k)

vref(k − 1)

]

,

and

q(k) = [ 0 −I I ]

[
v(k)

v(k − 1)
q(k − 1)

]

+

+ [ 0 I ]

[
vref(k)

vref(k − 1)

]

, (12)

estimated future velocities and velocity error
integrals can be calculated recursively.

Next, the predicted positions are calculated by (9).
Therefore, the current side-slip angleα(k) has to be
determined. The current positionxk = [xk yk] and
the last two positionsxk−1 andxk−2 are transformed
to local coordinates, Fig. 4,

xk−i,loc =

[
cos θk−1 sin θk−1

− sin θk−1 cos θk−1

]

[xk−i−xk−1],

(13)
wherei ∈ [0 1 2]. Next, the parameters of a Spline-

approximation ofx(k− i) andy(k− i) are calculated
using a quadratic regressor[1 t t2] and dimension-
less timet ∈ [0; 2] according to

[
ax,0

ax,1

ax,2

]

=

[
1 0 0
1 1 1
1 2 4

]−1 [
xk−2

xk−1

xk

]

. (14)

The increment of the path angle∆θ is calcu-
lated by evaluating the derivatives of the Spline-
approximations at timet = 2,

∆θk = atan
dy

dx
= atan

dx/dt

dy/dt
= atan

ay,1 + 4ay,2

ax,1 + 4ax,2
.

(15)
Finally, the actual side-slip angle is given by
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t = 0
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Figure 4: Estimation of the current path angleθk

αk = θk − ϕk = θk−1 + ∆θk − ϕk. (16)

The incremental calculation of the path angle has
the decisive advantage that possible transgressions
of the interval[−π;π] do not have to be accounted for.

Naturally, no meaningful results for the path angle
are obtained for zero track speedv. Therefore,
the path angle is set equal to the attitude angle for
small values ofv below a certain margin, followed
by a short region of linear interpolation to ensure
continuity and finally taken full beyond another
threshold ofv.

When using possibly noise corrupted measurement
data, the estimation can also be performed using a
greater number of previous positions, then employing
a least squares estimator.

To control the inertial attitude angle, the current
side-slipα is subtracted from the reference path angle
θref , thus obtaining a feasible reference attitudeϕref .

After the computation of an initial estimate of the
future positionsx, under the assumption that the side-
slip angleα remains constant over the prediction hori-
zon, the position errorsp = xref − x are calculated
and concatenated inP .

5.3 Minimization

The position errors are now approximated in a first
order Taylor series expansion,

P
.
= P 0 +

∂P

∂V ref

∂V ref

∂c
c =

P 0 −
∂X

∂V ref

∂V ref

∂c
c := P 0 − DXDV c. (17)

The matrixDX ∈ IR3(hp−2)×2(hp−2) can be writ-
ten as

DX =














∂x(k + 2 + i)

∂vref(k + j)

∂x(k + 2 + i)

∂ωref(k + j)

∂y(k + 2 + i)

∂vref(k + j)

∂y(k + 2 + i)

∂ωref(k + j)

∂ϕ(k + 2 + i)

∂vref(k + j)

∂ϕ(k + 2 + i)

∂ωref(k + j)














,

(18)
with i, j ∈ [1;hp − 2], andDV ∈ IR2(hp−2)×4

reads

DV =












1 f(1) 0 0
1 f(2) 0 0
...

...
0 0 1 f(1)
0 0 1 f(2)
...

...












(19)

The total derivatives of the positions with respect
to the reference velocities are calculated recursively.
The total derivatives of the velocitiesV and the ve-
locity error integralsQ (whereQ is the vector of ve-
locity error integrals concatenated ofq in the exact
same way asP ) with respect to the reference veloci-
tiesV ref are needed during the calculation of the total
derivatives of the positionsX.
The dependencies are

x(k + 2 + i) = f1(x(k + 1 + i),v(k + 1 + i))

v(k+1+i) = f2(v(k+i),v(k−1+i), q(k−1+i),

vref(k + i),vref(k − 1 + i))

q(k+i) = f3(v(k−1+i), q(k−1+i),vref(k−1+i)),

where the functionsf1 throughf3 are given by
(9) and (12).

The cost function (10) now reads

V (c) =
1

2
cT Rc+ (20)

+
1

2hp
(P 0 − DXDV c)T L(P 0 − DXDV c).

To ensure closed loop stability of the inertial angle,
which proved to be critical during testing, a terminal
constraint for the inertial angle is introduced, (Mayne
et al., 2000) and references therein.
To fulfill the terminal constraint, an additional term
with a Lagrange-multiplier is added to the cost func-
tion. The additional term reads
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λ (ϕ(k + hp; c) − ϕref(k + hp))
.
=

λ (ϕ0(k + hp) − ϕref(k + hp))
︸ ︷︷ ︸

∆ϕend

+λDϕc, (21)

where the 1 × 4 row vector Dϕ is the last
row of DXDV , i.e. the derivatives ofϕ(k + hp)
with respect to the form-parameters, andλ is the
Lagrange-multiplier. The second term in (21) is
a first order Taylor approximation of an otherwise
nonlinear constraint.

Minimization under fulfilment of the terminal
constraint is then obtained by differentiating with
respect toc and λ and equating the derivative with
zero.

After some algebraic manipulations the linear sys-
tem of equations with dimension 5"

1
hp

DT
V D

(ν)T
X LD

(ν)
X DV + R D

(ν)T
ϕ

D
(ν)
ϕ 0

#�
c(ν)

λ(ν)

�
=

=

"
−

1
hp

DT
V D

(ν)T
X LP

(ν)
0

∆ϕ
(ν)
end

#
, (22)

written with index ν for the ν-th cycle of the
iteration, is obtained.

With the calculated form-parametersc, the future
reference velocitiesV ref are updated.

v, ω
(ν+1)
ref (k + 1 + i) = (23)

= v, ω
(ν)
ref (k + 1 + i) + c

(ν)
1,3 + c

(ν)
2,4f(i)

Then, the updated prediction of the position errors
P

(ν+1)
0 and the matrix of derivativesD(ν+1)

X at the
new predicted positions are calculated.
After a specified number of iterations, the algorithm
terminates. Usually, a few cycles are sufficient to
achieve convergence.

The weight matricesL and R, the prediction
horizon hp, the form factorκ, the sampling time
Ts and the number of iterations performed are the
design parameters and substantially influence the
performance of the system.

The optimization of a few form-parameters instead
of an entire reference velocity sequence reduces the
calculation time significantly, since only a5 × 5-
system of equations has to be solved every iteration.
Moreover, the solution is more robust and the sys-
tem’s bandwidth can be adapted selectively.

Prediction and optimization using the estimated
side-slip angleα leads in some situations to unsta-
ble oscillatory behaviour of the side-slip angle during
tracking of stationary curves, while the reference po-
sitions are matched with high accuracy.
On the other hand, when omitting the side-slip angle
in the optimization, position precision is deteriorated.
The controller then attempts to match the attitude an-
gle of the robot with the reference path angle, which
makes it physically impossible to keep the reference
position at large side-accelerations, because the side
force is generated by the side-slip.
Therefore, a compromise between stability and accu-
racy is sought by reducing the estimated side-slip an-
gle α by a relaxation factorµ. A value of about 0.9
to 0.95 provides stability throughout the entire feasi-
ble 2-dimensional velocity-curvature domain for sta-
tionary curves, while keeping position precision at a
reasonable level.

5.4 Application of the control law of
the inner loop

The velocity error̂e(k + 1) can now be calculated, as
mentioned before. The velocity error integralq(k) is
known from the first step of the prediction.
Therefore, the control law of the inner loop (8), writ-
ten for timek + 1

u(k + 1) = K

[
ê(k + 1)

e(k)
−q(k)

]

(24)

is now used to compute the PWM-input signals to
the DC-motors, which are applied at the end of the
current sampling interval, i.e. at timek + 1.
This means that the algorithm can consume the en-
tire sampling interval to calculate the output without
any negative effect on the control performance. The
calculation time is thus effectively compensated for,
provided it does not exceed the duration of one sam-
pling interval.

6 RESULTS

To test the tracking algorithm, simulations are carried
out using the nonlinear model.
Changing ground conditions are modeled via low fre-
quency noise or step changes acting on the respective
parameters of the nonlinear model.
The effect of possible modeling inaccuracies is simu-
lated by simply modifying various parameters used in
controller design.

To show the ability of the system to cope with
changing ground conditions, a stationary curve (i.e.
a circle) with a moderate centripetal acceleration
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of 2.9ms−2, starting and ending with a sinusoidal
curvature-over-arclength profile and linear acceler-
ation and deceleration of the track speed, Fig. 5, is
used as reference trajectory, fed to the control algo-
rithm in terms of referencex-, y- andθ-sequences.
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Figure 5: Velocity and curvature profile used to generate the
reference trajectory

After 1.5s, the ground friction drops to 70% of
the initial value and returns to 100% after 5s. The
absolute of the side-slip angle increases drastically to
peak values near 35◦, Fig. 6. Stability is maintained,
the position error, however, increases almost pro-
portionally with the absolute of the side-slip angle,
reaching peak values of below 5cm, Fig. 7. Low
frequency damped oscillations of the side-slip angle
can be observed.

For comparison, the plots are underlayed with the
results for the same trajectory without disturbances.
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Figure 6: Side-slip angle with and without disturbance
(dashed)
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Figure 7: Absolute position error with and without distur-
bance (dashed)

The corresponding input signalsrPWM,r and
rPWM,l are depicted in Fig. 8 and the calculated ref-
erence velocitiesvref andωref and the true velocities
v andω are displayed in Fig. 9.
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Figure 8: Right and left PWM-input signal, with and with-
out disturbance (dashed)
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Figure 9: Velocities with and without disturbance, true:
dashed, reference: solid

To show the performance of the algorithm at larger
centripetal accelerations and larger side-slip angles,
a sharp turn with a minimum radius of 0.29m at a
velocity of 1.1ms−2 is performed, leading to a peak
side-slip angle of 45◦, Fig. 10.

A certain position error has to be accepted, but
as soon as the side-acceleration (and with it the
side-slip) diminishes, the error is compensated.
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Figure 10: 3D-visualization of the robot sliding through a sharp turn

In a first practical test, the algorithm, written in
C, was executed on a 600MHz-clock-rate Blackfin
BF533 DSP. The calculation time consumed during
each sampling interval is well below the duration of
the interval.

7 CONCLUSION

A robust and universally applicable tracking control
algorithm is presented, that suffers under none of the
drawbacks inherent to the various approaches found
in literature.

The presented tracking algorithm performs very
well even under severe disturbances in a simulation.

The state feedback controller with integration of
the control error of the inner loop makes the system
very robust against modeling inaccuracies.

The optimization in the outer loop does not con-
tain any model assumptions except for the kinematic
equations, which are not subject to any uncertainties,
and is therefore (depending on the tuning parameters)
very robust against changing ground conditions.

Although the algorithm was developed for the class
of unicycle-type mobile robots or 2WDD(two-wheel-
differential-drive)-robots, it can easily be adapted to
be used for four-wheelers with one steered axle. Only
the velocity dynamics would have to be modified.
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