the further study of the brain activity, further
improvement of artificial intelligence and the
advancement in detectors like EEG and fNIRS will
also benefit the optimizing of the current therapy. In
conclusion, the rapid development of the BCI therapy
for the post-stroke motor rehabilitation brings new
hopes for the patients. The BCI therapy is a complex
therapy that contains a huge range of knowledge from
different fields. With the further development of the
technique and the research, BCI therapy will find a
better way to cure patients with pain.
REFERENCES
Ahn, M., Lee, M., & Choi, J., et al. 2014. A review of brain-
computer interface games and an opinion survey from
researchers, developers and users. Sensors 14(8):
14601-14633.
Alghamdi, I., Ariti, C., & Williams, A., et al. 2021.
Prevalence of fatigue after stroke: A systematic review
and meta-analysis. European Stroke Journal 6(4): 319-
332.
Ang, K. K., Guan, C., & Phua, K. S., et al. 2014. Brain-
computer interface-based robotic end effector system
for wrist and hand rehabilitation: results of a three-
armed randomized controlled trial for chronic stroke.
Frontiers in Neuroengineering 7: 30.
Awuah, W. A., Ahluwalia, A., & Darko, K., et al. 2024.
Bridging Minds and Machines: The Recent Advances
of Brain-Computer Interfaces in Neurological and
Neurosurgical Applications. World Neurosurgery 189:
138-153.
Belda-Lois, J. M., Mena-del Horno, S., & Bermejo-Bosch,
I., et al. 2011. Rehabilitation of gait after stroke: a
review towards a top-down approach. Journal of
Neuroengineering and Rehabilitation 8: 66.
Bermúdez i Badia, S.,García Morgade, A., & Samaha, H.,
et al. 2013. Using a hybrid brain computer interface and
virtual reality system to monitor and promote cortical
reorganization through motor activity and motor
imagery training. IIEEE Transactions on Neural
Systems and Rehabilitation Engineering 21(2): 174-
181.
Burns, A., Adeli, H., & Buford, J. A. 2014. Brain-computer
interface after nervous system injury. The
Neuroscientist 20(6): 639-651.
Cervera, M. A., Soekadar, S. R., & Ushiba, J., et al. 2018.
Brain-computer interfaces for post-stroke motor
rehabilitation: a meta-analysis. Annals of Clinical and
Translational Neurology 5(5): 651-663.
Chan, H. L., Kuo, P. C., & Cheng, C. Y., et al. 2018.
Challenges and Future Perspectives on
Electroencephalogram-Based Biometrics in Person
Recognition. Frontiers in Neuroinformatics 12: 66.
Chen, J., Xia, Y., & Zhou, X., et al. 2023. fNIRS-EEG BCIs
for Motor Rehabilitation: A Review. Bioengineering
10(12) :1393.
Colucci, A., Vermehren, M., & Cavallo, A., et al. 2022.
Brain-Computer Interface-Controlled Exoskeletons in
Clinical Neurorehabilitation: Ready or Not?
Neurorehabilitation and Neural Repair 36(12): 747-
756.
Frolov, A. A., Bobrov, P. D., & Biryukova, E. V., et al.
2018. Electrical, Hemodynamic, and Motor Activity in
BCI Post-stroke Rehabilitation: Clinical Case Study.
Frontiers in Neurology 9: 1135.
Fu, J., Chen, S., & Jia, J. 2022. Sensorimotor Rhythm-
Based Brain-Computer Interfaces for Motor Tasks
Used in Hand Upper Extremity Rehabilitation after
Stroke: A Systematic Review. Brain Science 13(1) :56.
Jöbsis, F. F. 1977. Noninvasive, infrared monitoring of
cerebral and myocardial oxygen sufficiency and
circulatory parameters. Science 198(4323): 1264-1267.
Khan, M. A., Das, R., & Iversen, H. K., et al. 2020. Review
on motor imagery based BCI systems for upper limb
post-stroke neurorehabilitation: From designing to
application. Computers in Biology and Medicine 123:
103843.
Maiseli, B., Abdalla, A. T., & Massawe, L. V., et al. 2023.
Brain-computer interface: trend, challenges, and
threats. Brain Informatics 10(1): 20.
Marín-Medina, D. S., Arenas-Vargas, P. A., & Arias-
Botero, J. C., et al. 2024. New approaches to recovery
after stroke. Neurological Sciences 45(1): 55-63.
Mrachacz-Kersting, N., Ibáñez, J., & Farina, D. 2021.
Towards a mechanistic approach for the development
of non-invasive brain-computer interfaces for motor
rehabilitation. Journal of Physiology 599(9): 2361-
2374.
Nicoll, R. A. 2017. A Brief History of Long-Term
Potentiation. Neuron 93(2): 281-290.
Remsik, A. B., Dodd, K., & Williams, L., et al. 2018.
Behavioral Outcomes Following Brain-Computer
Interface Intervention for Upper Extremity
Rehabilitation in Stroke: A Randomized Controlled
Trial. Frontiers in Neuroscience 12: 752.
Rossini, P. M., Noris Ferilli, M. A., & Ferreri, F. 2012.
Cortical plasticity and brain computer interface.
European Journal of Physical and Rehabilitation
Medicine 48(2): 307-312.
Vourvopoulos, A., Pardo, O. M., & Lefebvre, S., et al.
2019. Effects of a Brain-Computer Interface With
Virtual Reality (VR) Neurofeedback: A Pilot Study in
Chronic Stroke Patients. Frontiers in Human
Neuroscience 13: 210.
Wen, D., Fan, Y., & Hsu, S. H., et al. 2021. Combining
brain-computer interface and virtual reality for
rehabilitation in neurological diseases: A narrative
review. Annales de Physique Médicale et de
Réadaptation 64(1): 101404.