Kunkle, B. W., Grenier-Boley, B., Sims, R., Bis, J. C.,
Damotte, V., & et al. (2019). Genetic meta-analysis of
diagnosed Alzheimer's disease identifies new risk loci
and implicates Abeta, tau, immunity and lipid
processing. Nature Genetics, 51(3), 414–
430. https://www.nature.com/articles/s41588-019-
0358-2
Lewis, C. M., & Vassos, E. (2021). Polygenic risk scores:
From research tools to clinical instruments. Nature
Medicine, 27(11), 1876–1884.
https://www.nature.com/articles/s41591-021-01549-6
Ling, I. F., Bhongsatiern, J., Simpson, J. F., Fardo, D. W.,
Estus, S., & Alzheimer's Disease Neuroimaging
Initiative. (2012). Genetics of clusterin isoform
expression and Alzheimer's disease risk. PLOS ONE,
7(4), e33923.
https://pubmed.ncbi.nlm.nih.gov/21543606/
Lourida, I., Hannon, E., Littlejohns, T. J., Langa, K. M.,
Hyppönen, E., Kuzma, E., & Llewellyn, D. J. 2021.
Association of lifestyle and genetic risk with incidence
of dementia. JAMA 325(4):38–347.
https://pubmed.ncbi.nlm.nih.gov/34061824/
Malik, A., & Nasir, S. (2021). Clinical Presentation of
Alzheimer Disease (AD): A hospital based
observational study.
https://core.ac.uk/download/492937726.pdf
Mayo Clinic. (n.d.). Alzheimer's disease genes:
Understanding the role of genetics in Alzheimer's
disease. Mayo Clinic.
https://www.mayoclinic.org/diseases-
conditions/alzheimers-disease/in-depth/alzheimers-
genes/art-20046552
Medeiros, R., Baglietto-Vargas, D., & LaFerla, F. M.
(2011). The role of tau in Alzheimer's disease and
related disorders. CNS Neuroscience & Therapeutics,
17(5), 514–
524. https://pmc.ncbi.nlm.nih.gov/articles/PMC40722
15/
Miglio, L. D., & Vanzulli, I. (2021). The role of APOE ε4
in Alzheimer's disease pathogenesis: Insights from
molecular mechanisms and therapeutic strategies.
Alzheimer's & Dementia, 17(12), 1920–1932.
https://pubmed.ncbi.nlm.nih.gov/33679311/
Montagne, A., Nation, D. A., Sagare, A. P., Barisano, G.,
Sweeney, M. D., Chakhoyan, A., ... & Zlokovic, B. V.
(2020). APOE4 leads to blood–brain barrier
dysfunction predicting cognitive decline. Nature,
581(7806), 71–76.
https://pubmed.ncbi.nlm.nih.gov/30691533/
National Institute on Aging. (2021, June 30). Alzheimer's
disease genetics fact sheet. National Institute on
Aging. https://www.nia.nih.gov/health/alzheimers-
causes-and-risk-factors/alzheimers-disease-genetics-
fact-sheet
National Institute on Aging. (2022, June). Alzheimer's
Disease Genetics Fact Sheet. National Institutes of
Health. https://www.nia.nih.gov/health/alzheimers-
causes-and-risk-factors/alzheimers-disease-genetics-
fact-sheet
National Human Genome Research Institute.
(n.d.). Polygenic risk scores.
Genome.gov. https://pubmed.ncbi.nlm.nih.gov/365204
33/
National Institute on Aging. (n.d.). What happens in the
brain in Alzheimer's disease? National Institute on
Aging. https://www.nia.nih.gov/health/alzheimers-
causes-and-risk-factors/what-happens-brain-
alzheimers-disease
O’Brien, R., & Wong, J. (2017). Genetic mutations in
early-onset Alzheimer's diseae. PubMed, 28350801.
https://pubmed.ncbi.nlm.nih.gov/28350801/
Ramanan, V. K., Kim, S., Holohan, K., Shen, L., Nho, K.,
Risacher, S. L., Foroud, T. M., Mukherjee, S., Crane,
P. K., Aisen, P. S., & Saykin, A. J. (2012). Genome-
wide pathway analysis of memory impairment in the
Alzheimer's Disease Neuroimaging Initiative (ADNI)
cohort implicates gene candidates, canonical pathways,
and networks. Brain Imaging and Behavior, 6(4), 634–
648. https://pubmed.ncbi.nlm.nih.gov/22865056/
Rodríguez-Rodero, S., Delgado-Álvarez, A., & Fernández-
Morera, J. L. (2023). Epigenetic and non-epigenetic
mechanisms in the accelerated cellular aging in late-
onset Alzheimer's disease. ResearchGate.
https://www.researchgate.net/publication/372688466_
Epigenetic_and_non-
epigenetic_mechanisms_in_the_accelerated_cellular_
aging_in_late-onset_Alzheimer's_disease
Sanchez, D. J., & Kaciroti, N. (2017). The genetic basis of
Alzheimer’s disease: Insights from genome-wide
association studies. PubMed.
https://pubmed.ncbi.nlm.nih.gov/28738127/
Santos, M., & Ferreira, C. (2020). Genetic mutations in
PSEN1, PSEN2, and APP genes linked to early-onset
Alzheimer's disease. Scientific Reports, 10(1).
https://pubmed.ncbi.nlm.nih.gov/33188256/
Shannon, O. M., Stephan, B. C. M., Granic, A., Lentjes, M.
A. H., Hayat, S., Mulligan, A., ... & Siervo, M. (2023).
Mediterranean diet adherence and cognitive function in
the UK Biobank cohort. BMC Medicine, 21(1), 86.
https://pubmed.ncbi.nlm.nih.gov/36915130/
Sims, R., van der Lee, S. J., Naj, A. C., Bellenguez, C.,
Badarinarayan, N., McQuillin, A., ... & Iglesias, A.
(2014). Rare coding variants in PLCG2, TREM2, and
ABI3 associated with Alzheimer’s disease. Nature,
514(7521), 150-
153. https://pubmed.ncbi.nlm.nih.gov/24951455/
Sottejeau, Y., Bretteville, A., Cantrelle, F.-X., Malmanche,
N., Demiaute, F., Mendes, T., ... & Sergeant, N.
(2015).BIN1 recovers tauopathy-induced long-term
memory deficits in mice and interacts with Tau through
Thr(348) phosphorylation. Acta Neuropathologica,
130(5), 659–
677. https://pubmed.ncbi.nlm.nih.gov/31065832/
Tan, C. H., Bonham, L. W., Fan, C. C., Mormino, E. C.,
Sugrue, L. P., & Yokoyama, J. S. (2023). Polygenic
hazard scores in Alzheimer's disease risk prediction: A
review of recent advances and future
directions. Neurobiology of Aging, 118, 108–120.
https://pubmed.ncbi.nlm.nih.gov/36520433/