making FASN (FASN) and ACC promising
therapeutic targets’ inhibitors (e.g., TVB-2640, C75
and orlistat, among others) have shown preclinical
efficacy, but their clinical translation remains
challenging due to metabolic compensation. The
future of lipid synthesis inhibition should focus on
combination therapies, where lipid synthesis-
targeting drugs are combined with glycolysis
inhibitors to prevent metabolic escape or impair
oncogenic signaling pathways by disrupting lipid raft
integrity.
These findings provide a valuable reference for
future studies, particularly in the refinement of lipid-
targeting drugs to increase specificity and reduce
toxicity, and in the development of combination
strategies to counteract metabolic compensation. To
address these limitations and advance cancer
therapies targeting lipid metabolism, future research
should focus on safer, more selective inhibitors of
lipid metabolism to minimise toxicity, improve
efficacy, and combine metabolic inhibitors with
immune checkpoint inhibitors or chemotherapy to
improve treatment response.
REFERENCES
Åbacka, H., Masoni, S., Poli, G., Huang, P., Gusso, F.,
Granchi, C., Minutolo, F., Tuccinardi, T., Hagström-
Andersson, A. K., & Lindkvist-Petersson, K. 2024.
SMS121, a new inhibitor of CD36, impairs fatty acid
uptake and viability of acute myeloid leukemia.
Scientific Reports, 14(1), 9104-9104.
Baenke, F., Peck, B., Miess, H., & Schulze, A. 2013.
Hooked on fat: The role of lipid synthesis in cancer
metabolism and tumor development. Disease Models &
Mechanisms, 6(6), 1353–1363.
Baron, A., Migita, T., Tang, D., & Loda, M. 2004. Fatty
acid synthase: A metabolic oncogene in prostate
cancer? Journal of Cellular Biochemistry, 91(1), 47-53.
Beloribi-Djefaflia, S., Vasseur, S., & Guillaumond, F.
2016. Lipid metabolic reprogramming in cancer cells.
Oncogenesis, 5(1), e189.
Bray, F., Laversanne, M., Weiderpass, E., &
Soerjomataram, I. 2021. The ever-increasing
importance of cancer as a leading cause of premature
death worldwide. Cancer, 127(16), 3029–3030.
Butler, L. M., Perone, Y., Dehairs, J., Lupien, L. E., de Laat,
V., Talebi, A., Loda, M., Kinlaw, W. B., & Swinnen, J.
V. 2020. Lipids and cancer: Emerging roles in
pathogenesis, diagnosis and therapeutic intervention.
Advanced Drug Delivery Reviews, 159, 245-293.
Carracedo, A., Cantley, L. C., & Pandolfi, P. P. 2013.
Cancer metabolism: Fatty acid oxidation in the
limelight. Nature Reviews Cancer, 13(4), 227–232.
Currie, E., Schulze, A., Zechner, R., Walther, T. C., &
Farese, R. V., Jr. 2013. Cellular fatty acid metabolism
and cancer. Cell Metabolism, 18(2), 153–161.
DeBerardinis, R. J., Mancuso, A., Daikhin, E., Nissim, I.,
Yudkoff, M., Wehrli, S., & Thompson, C. B. 2007.
Beyond aerobic glycolysis: Transformed cells can
engage in glutamine metabolism that exceeds the
requirement for protein and nucleotide synthesis.
Proceedings of the National Academy of Sciences -
PNAS, 104(49), 19345-19350.
Furman, D., Campisi, J., Verdin, E., Carrera-Bastos, P.,
Targ, S., Franceschi, C., Ferrucci, L., Gilroy, D. W.,
Fasano, A., Miller, G. W., Miller, A. H., Mantovani, A.,
Weyand, C. M., Barzilai, N., Goronzy, J. J., Rando, T.
A., Effros, R. B., Lucia, A., Kleinstreuer, N., & Slavich,
G. M. 2019. Chronic inflammation in the etiology of
disease across the life span. Nature Medicine, 25(12),
1822-1832.
Hao, J., Zhang, Y., Yan, X., Yan, F., Sun, Y., Zeng, J.,
Waigel, S., Yin, Y., Fraig, M. M., Egilmez, N. K.,
Suttles, J., Kong, M., Liu, S., Cleary, M. P., Sauter, E.,
& Li, B. 2018. Circulating adipose fatty acid binding
protein is a new link underlying obesity-associated
Breast/Mammary tumor development. Cell
Metabolism, 28(5), 689-705.e5.
Hao, J., Yan, F., Zhang, Y., Triplett, A., Zhang, Y., Schultz,
D. A., Sun, Y., Zeng, J., Silverstein, K. A. T., Zheng,
Q., Bernlohr, D. A., Cleary, M. P., Egilmez, N. K.,
Sauter, E., Liu, S., Suttles, J., & Li, B. 2018. Expression
of Adipocyte/Macrophage fatty acid-binding protein in
tumor-associated macrophages promotes breast cancer
progression. Cancer Research (Chicago, Ill.), 78(9),
2343-2355.
Kelly, W., Diaz Duque, A. E., Michalek, J., Konkel, B.,
Caflisch, L., Chen, Y., Pathuri, S. C.,
Madhusudanannair-Kunnuparampil, V., Floyd, J., &
Brenner, A. 2023. Phase II investigation of TVB-2640
(denifanstat) with bevacizumab in patients with first
relapse high-grade astrocytoma. Clinical Cancer
Research, 29(13), 2419-2425.
Kley, J. T., Mack, J., Hamilton, B., Scheuerer, S., &
Redemann, N. 2011. Discovery of BI 99179, a potent
and selective inhibitor of type I fatty acid synthase with
central exposure. Bioorganic & Medicinal Chemistry
Letters, 21(19), 5924-5927.
Li, M., Xian, H., Tang, Y., Liang, X., & Tang, Y. 2021.
Fatty acid oxidation: Driver of lymph node metastasis.
Cancer Cell International, 21(1), 1-339.
Liu, L., Wang, B., Zhang, R., Wu, Z., Huang, Y., Zhang,
X., Zhou, J., Yi, J., Shen, J., Li, M., & Dong, M. 2023.
The activated CD36-src axis promotes lung
adenocarcinoma cell proliferation and actin
remodeling-involved metastasis in high-fat
environment. Cell Death & Disease, 14(8), 548-548.
Mozolewska, P., Duzowska, K., Pakiet, A., Mika, A., &
Śledziński, T. 2020. Inhibitors of fatty acid synthesis
and oxidation as potential anticancer agents in
colorectal cancer treatment. Anticancer Research,
40(9), 4843-4856.