Fahriani, M., Ilmawan, M., Fajar, J.K., Maliga, H.A.,
Frediansyah, A., Masyeni, S., et al. 2021. Persistence of
long COVID symptoms in COVID-19 survivors
worldwide and its potential pathogenesis - a systematic
review and meta-analysis. Narra J 1(2).
doi:10.52225/narraj.v1i2.36
Greene, C.J., Burleson, S.L., Crosby, J.C., Heimann, M.A.,
& Pigott, D.C. 2020. Coronavirus disease 2019:
International public health considerations. JACEP
Open 1(2): 70-77. doi:10.1002/emp2.12040
Hammond, J., Leister-Tebbe, H., Gardner, A., Abreu, P.,
Bao, W., Wisemandle, W., et al. 2022. Oral nirmatrelvir
for high-risk, nonhospitalized adults with COVID-19.
New England Journal of Medicine 386(15): 1397-1408.
doi:10.1056/NEJMoa2118542
Jin, Z., Wang, H., Duan, Y., & Yang, H. 2021. The main
protease and RNA-dependent RNA polymerase are two
prime targets for SARS-CoV-2. Biochemical and
Biophysical Research Communications 538: 63-71.
doi:10.1016/j.bbrc.2020.10.091
Lew, H.L., Oh-Park, M., & Cifu, D.X. 2020. The war on
COVID-19 pandemic. American Journal of Physical
Medicine & Rehabilitation 99(7): 571-572.
doi:10.1097/phm.0000000000001460
Mao, L., Shaabani, N., Zhang, X., Jin, C., Xu, W., Argent,
C., et al. 2024. Olgotrelvir, a dual inhibitor of SARS-
CoV-2 Mpro and cathepsin L, as a standalone antiviral
oral intervention candidate for COVID-19. Med 5(1):
42-61.e23. doi:10.1016/j.medj.2023.12.004
Mohamed, N.M., Ali, E.M.H., & AboulMagd, A.M. 2021.
Ligand-based design, molecular dynamics and
ADMET studies of suggested SARS-CoV-2 Mpro
inhibitors. RSC Advances 11(8): 4523-4538.
doi:10.1039/d0ra10141a
Mukae, H., Yotsuyanagi, H., Ohmagari, N., Doi, Y.,
Sakaguchi, H., Sonoyama, T., et al. 2023. Efficacy and
safety of ensitrelvir in patients with mild-to-moderate
coronavirus disease 2019: the Phase 2b part of a
randomized, placebo-controlled, Phase 2/3 study.
Clinical Infectious Diseases 76(8): 1403-1411.
doi:10.1093/cid/ciac933
Nicola, M., Alsafi, Z., Sohrabi, C., Kerwan, A., Al-Jabir,
A., Iosifidis, C., et al. 2020. The socio-economic
implications of the coronavirus pandemic (COVID-19):
a review. International Journal of Surgery 78: 185-193.
doi:10.1016/j.ijsu.2020.04.018
Owen, D.R., Allerton, C.M.N., Anderso, A.S.,
Aschenbrenner, L., Avery, M., Berritt, S., et al. 2021.
An oral SARS-CoV-2 Mpro inhibitor clinical candidate
for the treatment of COVID-19. Science 374(6575):
1589-1593. doi:10.1126/science.abl4784
Pfizer. 2023. PAXLOVID.
https://www.pfizer.com/news/press-release/press-
release-detail/pfizer-amends-us-government-paxlovid-
supply-agreement-and
Rashid, F., Xie, Z., Suleman, M., Shah, A., Khan, S., &
Luo, S. 2022. Roles and functions of SARS-CoV-2
proteins in host immune evasion. Frontiers in
Immunology 13. doi:10.3389/fimmu.2022.940756
Ren, S.-Y., Wang, W.-B., Gao, R.-D., & Zhou, A.-M. 2022.
Omicron variant (B.1.1.529) of SARS-CoV-2:
mutation, infectivity, transmission, and vaccine
resistance. World Journal of Clinical Cases 10(1): 1-11.
doi:10.12998/wjcc.v10.i1.1
Rhodin, M.H.J., Reyes, A.C., Balakrishnan, A., Bisht, N.,
Kelly, N.M., Gibbons, J.S., et al. 2024. The small
molecule inhibitor of SARS-CoV-2 3CLpro EDP-235
prevents viral replication and transmission in vivo.
Nature Communications 15(1). doi:10.1038/s41467-
024-50931-8
Roe, M.K., Junod, N.A., Young, A.R., Beachboard, D.C.,
& Stobart, C.C. 2021. Targeting novel structural and
functional features of coronavirus protease nsp5
(3CLpro, Mpro) in the age of COVID-19. Journal of
General Virology 102(3). doi:10.1099/jgv.0.001558
Shang, W., Dai, W., Yao, C., Xu, L., Tao, X., Su, H., et al.
2022. In vitro and in vivo evaluation of the main
protease inhibitor FB2001 against SARS-CoV-2.
Antiviral Research 208.
doi:10.1016/j.antiviral.2022.105450
Unoh, Y., Uehara, S., Nakahara, K., Nobori, H., Yamatsu,
Y., Yamamoto, S., et al. 2022. Discovery of S-217622,
a noncovalent oral SARS-CoV-2 3CL protease
inhibitor clinical candidate for treating COVID-19.
Journal of Medicinal Chemistry 65(9): 6499-6512.
doi:10.1021/acs.jmedchem.2c00117
V’kovski, P., Kratzel, A., Steiner, S., Stalder, H., & Thiel,
V. 2020. Coronavirus biology and replication:
implications for SARS-CoV-2. Nature Reviews
Microbiology 19(3): 155-170. doi:10.1038/s41579-
020-00468-6
Wang, B., Li, H.-J., Cai, M.-M., Lin, Z.-X., Ou, X.-F., Wu,
S.-H., et al. 2023. Antiviral efficacy of RAY1216
monotherapy and combination therapy with ritonavir in
patients with COVID-19: a Phase 2, single-centre,
randomised, double-blind, placebo-controlled trial.
eClinicalMedicine 63.
doi:10.1016/j.eclinm.2023.102189
Wang, F., Xiao, W., Tang, Y., Cao, M., Shu, D., Asakawa,
T., et al. 2023. Efficacy and safety of SIM0417
(SSD8432) plus ritonavir for COVID-19 treatment: a
randomised, double-blind, placebo-controlled, Phase
1b trial. The Lancet Regional Health - Western Pacific
38. doi:10.1016/j.lanwpc.2023.100835
Wang, L., Berger, N.A., Davis, P.B., Kaelber, D.C.,
Volkow, N.D., & Xu, R. 2022. COVID-19 rebound
after Paxlovid and Molnupiravir during January-June
2022. doi:10.1101/2022.06.21.22276724
WHO. 2024. Number of COVID-19 cases reported to
WHO. https://data.who.int/dashboards/covid19/cases