Handwerker, D. A., Roopchansingh, V., Gonzalez-Castillo,
J., & Bandettini, P. A. 2012. Periodic changes in fMRI
connectivity. NeuroImage, 63(3), 1712–1719.
Hunter, T. R., Santos, L. E., Tovar-Moll, F., & De Felice,
F. G. 2025. Alzheimer’s disease bi-omarkers and their
current use in clinical research and practice. Molecular
Psychiatry, 30(1), 272–284.
Hutchison, R. M., Womelsdorf, T., Allen, E. A., Bandettini,
P. A., Calhoun, V. D., Corbetta, M., Della Penna, S.,
Duyn, J. H., Glover, G. H., Gonzalez-Castillo, J.,
Handwerker, D. A., Keilholz, S., Ki-viniemi, V.,
Leopold, D. A., de Pasquale, F., Sporns, O., Walter, M.,
& Chang, C. 2013. Dynamic functional connectivity:
Promise, issues, and interpretations. NeuroImage, 80,
360–378.
Khatri, U., & Kwon, G.-R. 2023. Explainable Vision
Transformer with Self-Supervised Learning to Predict
Alzheimer’s Disease Progression Using 18F-FDG PET.
Bioengineering, 10(10), Article 10.
Khvostikov, A., Aderghal, K., Benois-Pineau, J., Krylov,
A., & Catheline, G. 2018. 3D CNN-based classification
using sMRI and MD-DTI images for Alzheimer disease
studies (No. arXiv:1801.05968). arXiv.
Kishore, P., Usha Kumari, Ch., Kumar, M. N. V. S. S., &
Pavani, T. 2021. Detection and analysis of Alzheimer’s
disease using various machine learning algorithms.
Materials Today: Proceedings, 45, 1502–1508.
Kwak, M. G., Su, Y., Chen, K., Weidman, D., Wu, T., Lure,
F., Li, J., & for the Alzheimer’s Disease Neuroimaging
Initiative. 2023. Self-Supervised Contrastive Learning
to Predict the Progression of Alzheimer’s Disease with
3D Amyloid-PET. Bioengineering, 10(10), Article 10.
Navigatore Fonzo, L., Alfaro, M., Mazaferro, P., Golini, R.,
Jorge, L., Cecilia Della Vedova, M., Ramirez, D.,
Delsouc, B., Casais, M., & Anzulovich, A. C. 2021. An
intracerebroventricular injec-tion of amyloid-beta
peptide (1–42) aggregates modifies daily temporal
organization of clock factors expression, protein
carbonyls and antioxidant enzymes in the rat
hippocampus. Brain Research, 1767, 147449.
Qiu, S., Miller, M. I., Joshi, P. S., Lee, J. C., Xue, C., Ni,
Y., Wang, Y., De Anda-Duran, I., Hwang, P. H.,
Cramer, J. A., Dwyer, B. C., Hao, H., Kaku, M. C.,
Kedar, S., Lee, P. H., Mian, A. Z., Murman, D. L.,
O’Shea, S., Paul, A. B., … Kolachalama, V. B. 2022.
Multimodal deep learning for Alzheimer’s disease
dementia assessment. Nature Communications, 13(1),
3404.
Scarmeas, N., Brandt, J., Blacker, D., Albert, M.,
Hadjigeorgiou, G., Dubois, B., Devanand, D., Ho-nig,
L., & Stern, Y. 2007. Disruptive Behavior as a Predictor
in Alzheimer Disease. Archives of Neurology, 64(12),
1755–1761.
Scheltens, P., Strooper, B. D., Kivipelto, M., Holstege, H.,
Chételat, G., Teunissen, C. E., Cummings, J., & Flier,
W. M. van der. 2021. Alzheimer’s disease. The Lancet,
397(10284), 1577–1590.
Schwinne, M., Alonso, A., Roberts, B. R., Hickle, S.,
Verberk, I. M., Epenge, E., Gikelekele, G., Tsengele,
N., Kavugho, I., Mampunza, S., Yarasheski, K. E.,
Teunissen, C. E., Stringer, A., Levey, A., & Ikanga, J.
2023. The Association of Alzheimer’s Disease-related
Blood-based Biomarkers with Cognitive Screening
Test Performance in the Congolese Population in
Kinshasa. medRxiv, 2023.08.28.23294740.
Velazquez, M., Anantharaman, R., Velazquez, S., Lee, Y.,
& Initiative, for the A. D. N. 2019. RNN-Based
Alzheimer’s Disease Prediction from Prodromal Stage
using Diffusion Tensor Imaging. 2019 IEEE
International Conference on Bioinformatics and
Biomedicine (BIBM), 1665–1672.
Velazquez, M., Lee, Y., & Initiative, for the A. D. N. 2021.
Random forest model for feature-based Alzheimer’s
disease conversion prediction from early mild cognitive
impairment subjects. PLOS ONE, 16(4), e0244773.
Vimbi, V., Shaffi, N., & Mahmud, M. 2024a. Interpreting
artificial intelligence models: A system-atic review on
the application of LIME and SHAP in Alzheimer’s
disease detection. Brain Informat-ics, 11(1), 10.
Vimbi, V., Shaffi, N., & Mahmud, M. 2024b. Interpreting
artificial intelligence models: A system-atic review on
the application of LIME and SHAP in Alzheimer’s
disease detection. Brain Informat-ics, 11(1), 10.
Yi, F., Yang, H., Chen, D., Qin, Y., Han, H., Cui, J., Bai,
W., Ma, Y., Zhang, R., & Yu, H. 2023. XGBoost-
SHAP-based interpretable diagnostic framework for
alzheimer’s disease. BMC Medical In-formatics and
Decision Making, 23(1), 137.
Youssef, A. E., Altameem, T., Pethuraj, M. S., Baskar, S.,
& Hassanein, A. S. 2025. Alzheimer’s disease
prognosis using neuro-gen evo-synthesis framework for
elderly populations. Biomedical Sig-nal Processing and
Control, 102, 107349.
Zhang, Y., He, X., Chan, Y. H., Teng, Q., & Rajapakse, J.
C. 2023. Multi-modal graph neural net-work for early
diagnosis of Alzheimer’s disease from sMRI and PET
scans. Computers in Biology and Medicine, 164,
107328.
Zhu, F., Wolters, F. J., Yaqub, A., Leening, M. J. G.,
Ghanbari, M., Boersma, E., Ikram, M. A., & Ka-vousi,
M. 2023. Plasma Amyloid-β in Relation to Cardiac
Function and Risk of Heart Failure in General
Population. JACC: Heart Failure, 11(1), 93–102.