confirms that the optimal path planning algorithm is
intrinsically linked to the operational environment's
complexity. A fundamental trade-off exists between
computational efficiency and solution robustness.
The A* algorithm consistently demonstrated superior
speed and optimality in low-to-medium complexity
environments, establishing it as a benchmark for
structured spaces. In contrast, RRT* offered greater
flexibility in navigating intricate, non-convex
topographies, while the metaheuristic GA and ACO
approaches proved capable of solving the most
complex scenarios, albeit at a significant
computational cost and with high sensitivity to
parameter tuning.
Future research should prioritize the development
of hybrid methodologies that synergistically combine
the deterministic efficiency of algorithms like A*
with the exploratory strengths of RRT* or ACO.
Furthermore, extending this comparative analysis to
dynamic and three-dimensional environments,
alongside integrating machine learning for adaptive
parameterization, remains a critical next step for
advancing autonomous navigation systems.
REFERENCES
Aksoy, N., Cakil, F., & Tekdemir, I. G. (2024).
Performance Analysis of Deterministic and
Probabilistic Path Planning Algorithms in Complex
Environments. 2024 Innovations in Intelligent Systems
and Applications C, ASYU
2024.https://doi.org/10.1109/ASYU62119.2024.10757
028
Elshamli, A., Abdullah, H. A., & Areibi, S. (2004). Genetic
algorithm for dynamic path planning. Canadian
Conference on Electrical and Computer Engineering,
2, 0677–0680.
https://doi.org/10.1109/CCECE.2004.1345203
Hsueh, H. Y., Toma, A. I., Ali Jaafar, H., Stow, E., Murai,
R., Kelly, P. H. J., & Saeedi, S. (2022). Systematic
comparison of path planning algorithms using
PathBench. Advanced Robotics, 36(11), 566–581.
https://doi.org/10.1080/01691864.2022.2062259
Li, B., Li, B., Ni, K., Zhou, F., Li, Y., Huang, W., Jiang, H.,
Liu, F., Ni, K., Zhou, F., Li, Y., Huang, W., Jiang, H.,
& Liu, F. (2025). Research on robot path planning
based on fused Dijkstra and TEB algorithms. Journal of
Mechanical Science and Technology 2025 39:8, 39(8),
4651–4660. https://doi.org/10.1007/S12206-025-
0738-8
Liu, J., Yang, J., Liu, H., Tian, X., & Gao, M. (2016). An
improved ant colony algorithm for robot path planning.
Soft Computing 2016 21:19, 21(19), 5829–5839.
https://doi.org/10.1007/S00500-016-2161-7
Liu, L., Wang, X., Yang, X., Liu, H., Li, J., & Wang, P.
(2023). Path planning techniques for mobile robots:
Review and prospect. Expert Systems with
Applications, 227, 120254.
https://doi.org/10.1016/J.ESWA.2023.120254
Noreen, I., Khan, A., & Habib, Z. (2016). A Comparison of
RRT, RRT* and RRT*-Smart Path Planning
Algorithms. IJCSNS International Journal of Computer
Science and Network Security, 16(10), 20–27.
http://cloud.politala.ac.id/politala/1. Jurusan/Teknik
Informatika/19. e-journal/Jurnal Internasional
TI/IJCSNS/2016 Vol. 16 No. 10/20161004_A Compar
ison of RRT, RRT and RRT - Smart Path Planning
Algorithms.pdf
Reda, M., Onsy, A., Ghanbari, A., & Haikal, A. Y. (2024).
Path planning algorithms in the autonomous driving
system: A comprehensive review. Robotics and
Autonomous Systems,
174,104630.https://doi.org/10.1016/J.ROBOT.2024.10
4630
Sánchez-Ibáñez, J. R., Pérez-Del-pulgar, C. J., & García-
Cerezo, A. (2021). Path Planning for Autonomous
Mobile Robots: A Review. Sensors 2021, Vol. 21, Page
7898, 21(23), 7898. https://doi.org/10.3390/S21237898
Ugwoke, K. C., Nnanna, N. A., & Abdullahi, S. E. Y.
(2025). Simulation-based review of classical, heuristic,
and metaheuristic path planning algorithms. Scientific
Reports 2025 15:1, 15
(1), 12643-.
https://doi.org/10.1038/s41598-025-96614-2
Zhang, H., Zhao, Y. J., Jin, Y. X., & Duan, H. L. (2025).
Path planning algorithm of steerable flexible needle: A
review. Expert Systems with Applications, 287, 128270.
https://doi.org/10.1016/J.ESWA.2025.128270