with fragmented interdisciplinary collaboration,
slows translational progress.
Future research should prioritize federated
learning for harmonizing multi-institutional data,
hybrid models integrating neuroimaging with multi-
omics profiles, and explainable AI frameworks to
bridge the “ black-box ” gap. Strengthening
clinician-engineer partnerships, fostering public
education on AI ’ s diagnostic potential, and
establishing ethical guidelines for patient-centric
deployment are equally critical. This study
underscores the transformative potential of AI in
advancing early AD detection and personalized
intervention, ultimately alleviating the global burden
of neurodegenerative diseases through scalable, data-
driven solutions.
REFERENCES
Au-Só, E., Gómez-Vicente, V., & Esquiva, G. 2020.
Biomarkers for Alzheimer’s disease early diagnosis.
Journal of Personalized Medicine, 10(3), 114.
Chen, Y., Ma, Q., Da, L., & Yu, Q. 2024. A transformer-
based unified multimodal framework for Alzheimer's
disease assessment. Computers in Biology and
Medicine, 180, 108979.
China Alzheimer's Disease Report. 2024. Journal of
Diagnostics Concepts & Practice, 23(3), 219–256.
Cohen, A. D., Landau, S. M., Snitz, B. E., Klunk, W. E.,
Blennow, K., & Zetterberg, H. 2019. Fluid and PET
biomarkers for amyloid pathology in Alzheimer's
disease. Molecular and Cellular Neuroscience, 97, 3–
17.
Gray, K. R., Aljabar, P., Heckemann, R. A., Hammers, A.,
& Rueckert, D. 2013. Random forest-based similarity
measures for multi-modal classification of Alzheimer's
disease. NeuroImage, 65, 167–175.
Jack, C. R., Jr., Bennett, D. A., Blennow, K., Carrillo, M.
C., Dunn, B., Haeberlein, S. B., ... & Silverberg, N.
2018. NIA-AA Research Framework: Toward a
biological definition of Alzheimer's disease.
Alzheimer's & Dementia, 14(4), 535–562.
Jack, C. R., Jr., Bernstein, M. A., Fox, N. C., Thompson, P.
M., Alexander, G. E., O'Brien, J. T., ... & Weiner, M.
W. 2010. The Alzheimer's Disease Neuroimaging
Initiative (ADNI): MRI methods. Journal of Magnetic
Resonance Imaging, 31(3), 615–636.
Klöppel, S., Stonnington, C. M., Chu, C., Draganski, B.,
Scahill, R. I., Rohrer, J. D., ... & Frackowiak, R. S. J.
2008. Automatic classification of MR scans in
Alzheimer's disease. Brain, 131(3), 681–689.
Lu, B., Li, H.-X., Chang, Z.-K., Wang, Y., Zhang, Y.,
Wang, Y., ... & Liu, M. 2022. A practical Alzheimer’
s disease classifier via brain imaging-based deep
learning on 85,721 samples. Journal of Big Data, 9(1),
101.
Malik, I., Iqbal, A., Gu, Y. H., & Al-Antari, M. A. 2024.
Deep learning for Alzheimer’s disease prediction: A
comprehensive review. Diagnostics, 14(12), 1281.
Marcus, D. S., Wang, T. H., Parker, J., Csernansky, J. G.,
Morris, J. C., & Buckner, R. L. 2007. Open access
series of imaging studies (OASIS): Cross-sectional
MRI data in young, middle aged, nondemented and
demented older adults. Journal of Cognitive
Neuroscience, 19(9), 1498–1507.
Wen, J., Thibeau-Sutre, E., Diaz-Melo, M., Samper-
Gonzalez, J., Routier, A., Bottani, S., ... & Durrleman,
S. 2020. Convolutional neural networks for
classification of Alzheimer's disease: Overview and
reproducible evaluation. Medical Image Analysis, 63,
101694.
World Health Organization. 2023. Dementia: Fact sheet.
https://www.who.int/news-room/fact-
sheets/detail/dementia
Yu, Q., Ma, Q., Da, L., & Chen, Y. 2024. A transformer-
based unified multimodal framework for Alzheimer's
disease assessment. Computers in Biology and
Medicine, 180, 108979.