ACKNOWLEDGEMENTS
Authors would like to thanks Kocaeli University BAP
Coordination Unit, project number FDK-2024-3576.
REFERENCES
Abdelaziz, A., Mohamed, H. A., & Hamad, E. K. I. (2023).
Performance analysis of double-face logarithmic spiral
metamaterial superstrate for full enhancement of
circularly polarized 5G spiral patch antenna
investigated using characteristic mode analysis.
International Journal of Microwave and Wireless
Technologies, 15(1), 129–142.
https://doi.org/10.1017/S1759078722000113
Chatterjee, A., Dey, P., Roy, K., & Parui, S. K. (2024). A
Monolayer Frequency‐Selective Surface for Wideband
Shielding Application with Adequate Out‐of‐Band
Separation and Angular Stability. International Journal
of Antennas and Propagation, 2024(1).
https://doi.org/10.1155/2024/6692659
Dey, S., & Dey, S. (2023). Broadband high gain cavity
resonator antenna using planar electromagnetic
bandgap (EBG) superstrate. International Journal of
Microwave and Wireless Technologies, 15(1), 90–101.
https://doi.org/10.1017/S1759078721001768
Gong, W., & Zhang, W. (2021). Design of Energy Selective
Surface with Ultra-wide Protection Band. Proceedings
of the 2021 Cross Strait Radio Science and Wireless
Technology Conference, CSRSWTC 2021, 106–108.
https://doi.org/10.1109/CSRSWTC52801.2021.96316
08
Hu, N., Zhu, X., Wang, H., Yin, H., & Xu, Y. (2024).
Design and analysis of response threshold of energy
selective surface based on serial LC circuits.
International Journal of Microwave and Wireless
Technologies, 16(7), 1181–1186.
https://doi.org/10.1017/S1759078724000771
Huang, R., Liu, J., & Liu, C. (2022). A Design of Pluggable
High Power Microwave Protection Device in
Waveguide. 2022 IEEE 9th International Symposium
on Microwave, Antenna, Propagation and EMC
Technologies for Wireless Communications (MAPE),
292–295.
https://doi.org/10.1109/MAPE53743.2022.9935211
K.Sumathi, Lavadiya, S., Yin, P. Z., Parmar, J., & Patel, S.
K. (2021). High gain multiband and frequency
reconfigurable metamaterial superstrate microstrip
patch antenna for C/X/Ku-band wireless network
applications. Wireless Networks, 27(3), 2131–2146.
https://doi.org/10.1007/s11276-021-02567-5
K, A. S. B., & Pradeep, A. (2022). Complementary
Metamaterial Superstrate for Wide Band High Gain
Antenna. 2022 IEEE Wireless Antenna and Microwave
Symposium (WAMS), 1–5.
https://doi.org/10.1109/WAMS54719.2022.9847735
Kangeyan, R., & Karthikeyan, M. (2024). Circularly
polarized implantable MIMO antenna for skin, brain
and heart implantation with wide axial ratio bandwidth.
International Journal of Communication Systems,
37(10). https://doi.org/10.1002/dac.5778
Luo, Z., Shan, X., Ren, X., Wu, K., Chen, Y., Hong, L., Ma,
H. F., Cheng, Q., & Cui, T. J. (2023). Active
Metasurface Absorber for Intensity- Dependent
Surface-Wave Shielding. IEEE Transactions on
Antennas and Propagation, 71(7), 5795–5804.
https://doi.org/10.1109/TAP.2023.3269160
Melouki, N., Hocini, A., Fegriche, F. Z., PourMohammadi,
P., Naseri, H., Iqbal, A., & Denidni, T. A. (2022). High-
Gain Wideband Circularly Polarised Fabry–Perot
Resonator Array Antenna Using a Single-Layered
Pixelated PRS for Millimetre-Wave Applications.
Micromachines 2022, Vol. 13, Page 1658, 13(10),
1658. https://doi.org/10.3390/MI13101658
Nguyen, D., & Seo, C. (2023). An Ultra-Miniaturized
Circular Polarized Implantable Antenna With Gain
Enhancement by Using DGS and Holey Superstrate for
Biomedical Applications. IEEE Access, 11, 16466–
16473.
https://doi.org/10.1109/ACCESS.2022.3174078
Pannetier-Lecoeur, M., Fermon, C., Biziere, N., Scola, J.,
& Walliang, A. L. (2007). RF Response of
Superconducting-GMR Mixed Sensors, Application to
NQR. IEEE Transactions on Applied
Superconductivity, 17(2), 598–601.
https://doi.org/10.1109/TASC.2007.898056
Qin, D., & Zhang, W. (2019). Design of Energy Selective
Surfaces with Wide Reflection Band. 2019 Computing,
Communications and IoT Applications (ComComAp),
425–427.
https://doi.org/10.1109/ComComAp46287.2019.9018
811
Wang, K., Liu, P., Liu, H., & Meng, J. (2017). A
miniaturized, self-actuated, energy selective spatial
filter. 2017 IEEE 17th International Conference on
Communication Technology (ICCT), 1689–1692.
https://doi.org/10.1109/ICCT.2017.8359918
Wang, L., Tang, Z., Bao, H., & Ding, D. (2022). An
Electromagnetic-Plasma Fluid Model Simulation of
Waveguide Plasma Limiter Filled With Different
Easily Ionized Inert Gas. IEEE Transactions on Plasma
Science, 50(10), 3839–3847.
https://doi.org/10.1109/TPS.2022.3205968
Yang, C., Liu, P. G., & Huang, X. J. (2013). A novel
method of energy selective surface for adaptive
HPM/EMP protection. IEEE Antennas and Wireless
Propagation Letters, 12, 112–115.
https://doi.org/10.1109/LAWP.2013.2243105
Zhang, J., Lin, M., Wu, Z., Ding, L., Bian, L., & Liu, P.
(2019). Energy Selective Surface with Power-
Dependent Transmission Coefficient for High-Power
Microwave Protection in Waveguide. IEEE
Transactions on Antennas and Propagation, 67(4),
2494–2502.
https://doi.org/10.1109/TAP.2019.2894274
Zhou, L., Liu, L., & Shen, Z. (2021). High-Performance
Energy Selective Surface Based on the Double-
Resonance Concept. IEEE Transactions on Antennas