accuracy of 91.9% and an F1-score of 91.2%. In this
regard, TabNet shows promise as a deep neural
network model that combines the interpretability of
classical tree-based methods with the representational
power of deep learning.
The performance of the models largely depends
on the quality and size of the dataset. Therefore,
addressing missing data through appropriate
imputation methods, incorporating new diagnosis-
specific features, and applying further feature
engineering techniques on existing data could
improve model performance.
In the healthcare domain, early diagnosis is
crucial, particularly for conditions like depression
that significantly impact both individual quality of
life and public health. When supported by expert
clinical supervision, such models can provide
valuable assistance in clinical decision-making
processes.
REFERENCES
Arik, S. O., & Pfister, T. (2021). TabNet: Attentive
interpretable tabular learning. Proceedings of the AAAI
Conference on Artificial Intelligence, 35(8), 6679–
6687. https://doi.org/10.1609/aaai.v35i8.16826
Başoğul, C., & Buldukoğlu, K. (2015). Depresif
bozukluklarda psikososyal girişimler. Psikiyatride
Güncel Yaklaşımlar - Current Approaches in
Psychiatry, 7(1), 1–15.
https://doi.org/10.5455/cap.20140426072955
Brazdil, P. B., Giraud-Carrier, C. G., Kononenko, I., &
Vilalta, R. (2010). A survey of metalearning for
classification. Artificial Intelligence Review, 33(4),
269–299. https://doi.org/10.1007/s10462-010-9236-5
Deveci, S. E., Ulutaşdemir, N., & Açık, Y. (2013). Bir
sağlık yüksekokulu öğrencilerinde depresyon
belirtilerinin görülme sıklığı ve etkileyen faktörler.
Fırat Tıp Dergisi, 18(2), 98–102.
Fan, Z., Yu, Z., Yang, K., Chen, W., Liu, X., Li, G., Yang,
X., & Chen, C. L. P. (2023). Diverse models, united
goal: A comprehensive survey of ensemble learning.
Computing and Intelligence Technology (CIT), 17(3),
123–156. https://doi.org/10.1049/cit2.70030
Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., …
Wang, Y. (2017). Artificial intelligence in healthcare:
Past, present and future. Stroke and Vascular
Neurology, 2(4), 230–243. https://doi.org/10.1136/svn-
2017-000101
Johnson, P. R., & Indvik, J. (1997). The boomer blues:
Depression in the workplace. Public Personnel
Management, 26(3), 359–365.
https://doi.org/10.1177/009102609702600305
Kurutkan, M. N., & Kara, O. (2021). Depresyonlu
bireylerde sosyo-demografik faktörlerin diyet
kalitesine etkileri: Türkiye Sağlık Araştırması
verilerinden analitik kanıtlar. In 3rd International
Symposium on Critical Analytical Thinking, Ankara,
Türkiye. https://doi.org/10.33793/acperpro.05.01.39
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning.
Nature, 521, 436–444.
https://doi.org/10.1038/nature14539
Mrazek, D. A., Hornberger, J. C., Altar, C. A., & Degtiar,
I. (2014). A review of the clinical, economic, and
societal burden of treatment-resistant depression:
1996–2013. Psychiatric Services, 65(8), 977–987.
https://doi.org/10.1176/appi.ps.201300059
Olesen, J., Gustavsson, A., Svensson, M., Wittchen, H.-U.,
Jönsson, B., & European Brain Council. (2012). The
economic cost of brain disorders in Europe. European
Journal of Neurology, 19(1), 155–162.
https://doi.org/10.1111/j.1468-1331.2011.03590.x
Schmidhuber, J. (2015). Deep learning in neural networks:
An overview. Neural Networks, 61, 85–117.
https://doi.org/10.1016/j.neunet.2014.09.001
Yıldız, N. G., Aydın, K., Aydın, H., Phiri, Y., & Yıldız, H.
(2024). Türkiye’de depresyonun yaygınlığı ile ilişkili
faktörler: Nüfusa dayalı bir çalışma. Türk Psikiyatri
Dergisi, 35(3), 167–177.
I.D. Mienye and Y. Sun, "A Survey of Ensemble Learning:
Concepts, Algorithms, Applications, and Prospects,"
IEEE Access, vol. 10, pp. 97039–97063, 2022,
https://doi.org/10.1109/ACCESS.2022.320727
J. C. Obi, “A Comparative Study of Several Classification
Metrics and Their Performances on Data,” World
Journal of Advanced Engineering Technology and
Sciences, vol. 8, no. 1, pp. 308–314, Feb. 2023, doi:
https://doi.org/10.30574/wjaets.2023.8.1.0054