tatic video summaries and a novel evaluation meth
od. Pattern Recognition Letters, 2011, 32(1): 56-6
8.
Barbieri, M., Agnihotri, L., Dimitrova, N. (2003). Vid
eo summarization: methods and landscape, in Inter
net Multimedia Management Systems IV, pp. 1-13.
Chen, L. C., Papandreou, G., Kokkinos, I., et al. (201
7). DeepLab: Semantic image segmentation with d
eep convolutional nets, atrous convolution, and ful
ly connected CRFs, IEEE Transactions on Pattern
Analysis and Machine Intelligence, 40(4): 834-848.
Chu, W., Song, Y., Jaimes, A. (2015). Video co-sum
marization: Video summarization by visual co-occu
rrence. in IEEE Conference on Computer Vision a
nd Pattern Recognition, pp. 3584-3592.
Doulamis, A. D., Doulamis, N. D., Kollias, S. D. (20
00). Fuzzy video content representation for video
summarization and content-based retrieval. Signal
Processing, 80(6): 1049-1067.
Fajtl, H., Sokeh, V., Argyriou, D., et al. (2019). Sum
marizing Videos with Attention. in Asian Conferen
ce on Computer Vision Workshops, pp. 39-54.
Gao, J., Yang, X., Zhang, Y., et al. (2021). Unsuperv
ised video summarization via relation-aware assign
ment learning. IEEE Transactions on Multimedia,
23: 3203-3214.
Gj, M., Loskovska, S., Dimitrovski, I., et al. (2008).
Comparison of Automatic Shot Boundary Detectio
n Algorithms Based On Color, Edges and Wavelet
s. in International Multiconference Information Soc
iety.
Gonuguntla, N., Mandal, B., Puhan, N., et al. (2019).
Enhanced Deep Video Summarization Network, in
British Machine Vision Conference.
Gygli, M., Grabner, H., Riemenschneider, H., et al. (2
014). Creating Summaries from User Videos, in E
CCV, pp. 505–520.
Hadi, Y., Essannouni, F., Thami, R. O. H. (2006). Vi
deo summarization by k-medoid clustering," in AC
M Symposium on Applied Computing, pp. 1400-1
401.
Hsu, T. C., Liao, Y. S., Huang, C. R. (2023). Video
Summarization With Spatiotemporal Vision Transfo
rmer. IEEE Transactions on Image Processing.
Ji, Z., et al. (2019). Video summarization with attenti
on-based encoder–decoder networks. IEEE Transact
ions on Circuits and Systems for Video Technolog
y, 30(6): 1709-1717.
Jung, Y., Cho, D., Kim, D., et al. (2019). Discriminat
ive feature learning for unsupervised video summa
rization. in AAAI Conference on Artificial Intellig
ence.
Khan, H., Hussain, T., Khan, S. U., et al. (2023). De
ep multi-scale pyramidal features network for supe
rvised video summarization," Expert Systems with
Applications, 221: 121288.
Lal, S., Duggal, S., Sreedevi, I. (2019). Online video
summarization: Predicting future to better summari
ze present. in IEEE Winter Conference on Applica
tions of Computer Vision, pp. 471-480.
Lebron, C. L., Koblents, E. (2019). Video summarizat
ion with LSTM and deep attention models. in Inte
rnational Conference on MultiMedia Modeling, pp.
175-187.
Long, J., Shelhamer, E., Darrell, T. (2015). Fully con
volutional networks for semantic segmentation. in
IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3431-3440.
Mahasseni, B., Lam, M., Todorovic, S. (2017). Unsup
ervised Video Summarization with Adversarial LS
TM Networks. in IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2982-2991.
Mundur, P., Rao, Y., Yesha, Y. (2006). Keyframe-bas
ed video summarization using Delaunay clustering.
International Journal on Digital Libraries, 6(2): 2
19-232.
Paul, M., Salehin, M. M. (2019). Spatial and motion
saliency prediction method using eye tracker data
for video summarization. IEEE Transactions on Ci
rcuits and Systems for Video Technology, 29(6):
1856-1867.
Puthige, I., Hussain, T., Gupta, S., et al. (2023). Atte
ntion Over Attention: An Enhanced Supervised Vi
deo Summarization Approach," Procedia Computer
Science, 218: 2359-2368.
Rochan, M., Ye, L., Wang, Y. (2018). Video summar
ization using fully convolutional sequence network
s. in ECCV, pp. 347-363.
Song, Y., Vallmitjana, J., Stent, A., et al. (2015). TV
Sum: Summarizing web videos using titles. in IEE
E Conference on Computer Vision and Pattern Re
cognition, pp. 5179–5187.
Wolf, W. H. (1996). Key frame selection by motion
analysis. in IEEE Computer Society, 1996, pp. 12
28–1231.
Yuan, Y., Zhang, J. (2023). Unsupervised Video Sum
marization via Deep Reinforcement Learning With
Shot-Level Semantics. IEEE Transactions on Circu
its and Systems for Video Technology, 33(1): 445
-456.
Yaliniz, G., Ikizler-Cinbis, N. (2021). Using independe
ntly recurrent networks for reinforcement learning
based unsupervised video summarization. Multimed
ia Tools and Applications, 80: 17827–17847.
Zang, S. S., Yu, H., Song, Y., et al. (2023). Unsuper
vised video summarization using deep Non-Local
video summarizationnetworks, Neurocomputing, 51
9: 26–35.
Zhang, K., Chao, W. L., Sha, F., et al. (2016). Video
summarization with long short-term memory, in
ECCV, pp. 766–782.
Zhang, Y., Liu, Y., Kang, W., et al. (2023). VSS-Net:
Visual Semantic Self-mining Network for Video
Summarization. IEEE Transactions on Circuits and
Systems for Video Technology.
Zhao, B., Gong, M., Li, X. (2021). Audiovisual video
summarization. IEEE Transactions on Neural Net
works and Learning Systems. 34(8): 5181-5188.