REFERENCES
Abdi, A., Sedrakyan, G., Veldkamp, B., & van
Hillegersberg, J. (2023). A deep learning and language-
knowledge-based model for analyzing student feedback
in intelligent educational systems. Soft Computing.
Anderson, E., Dryden, K., & Variava, K. (2018). Applying
machine learning to student feedback using clustering
and sentiment analysis. In Proceedings of the Canadian
Engineering Education Association (CEEA). Toronto,
Canada.
Atanasova, Ts., Filipova, N., Sulova, S., & Alexandrova, Y.
(2019). Intelligent data analysis for students.
University of Economics – Varna.
Breiman, L. (2001). Random forests. Machine Learning,
45(1), 5–32.
Cover, T., & Hart, P. (1967). Nearest neighbor pattern
classification. IEEE Transactions on Information
Theory, 13(1), 21–27.
Cortes, C., & Vapnik, V. (1995). Support-vector networks.
Machine Learning, 20(3), 273–297.
Dervenis, K., Kanakis, G., & Fitsilis, P. (2024). Sentiment
analysis of student feedback: A comparative study using
lexicon-based and machine learning techniques.
Information Processing & Management, 61(3).
Friedman, J. H. (2001). Greedy function approximation: A
gradient boosting machine. Annals of Statistics, 29(5),
1189–1232.
Gaftandzhieva, S., Doneva, R., & Bandeva, S. (2019).
Intelligent data analysis for improving learning
outcomes. In Proceedings of ERIS 2019. Plovdiv,
Bulgaria.
Haykin, S. (2009). Neural networks and learning machines
(3rd ed.). Pearson.
Hosmer, D. W., Lemeshow, S., & Sturdivant, R. (2013).
Applied logistic regression (3rd ed.). Wiley.
Ivanov, G. (2020). Modern methods for intelligent data
analysis. New Bulgarian University.
Kaggle. (2025). Engineering student journey. Kaggle
Datasets. Retrieved August 25, 2025, from
https://www.kaggle.com/datasets/prasad22/student-
satisfaction-survey
Kalcheva, N., Karova, M., & Penev, I. (2020). Comparison
of the accuracy of SVM kernel functions in text
classification. In Proceedings of the International
Conference on Big Data, IoT and Artificial Intelligence
(BIA 2020) (pp. 141–145).
Kalcheva, N., Todorova, M., & Penev, I. (2023). Study of
the k-nearest neighbors method with various features
for text classification in machine learning. In
Proceedings of the International Conference on
Artificial Intelligence (ICAI 2023) (pp. 37–40).
Kastrati, Z., Dalipi, F., Imran, A. S., Nucci, K. P., & Vanni,
M. A. (2021). Sentiment analysis of student feedback
using NLP and deep learning: A systematic mapping
study. Applied Sciences, 11(9), 3986.
Ke, G., Meng, Q., Finley, T., et al. (2017). LightGBM: A
highly efficient gradient boosting decision tree. In
Advances in Neural Information Processing Systems
(NeurIPS) (pp. 3146–3154).
Katragadda, S., Ravi, V., & Kumar, P. (2020). Analyzing
student feedback using machine learning algorithms. In
Proceedings of the IEEE International Conference on
Emerging Trends in Information Technology and
Engineering (ic-ETITE). Vellore, India.
Petrova, D., & Bozhikova, V. (2022). Random forest and
recurrent neural network for sentiment analysis on texts
in Bulgarian language. In Proceedings of the
International Conference on Biomedical Innovations
and Applications (BIA 2022) (pp. 66–69). Varna,
Bulgaria.
Quinlan, J. R. (1993). C4.5: Programs for machine
learning. Morgan Kaufmann.
Villegas-Ch, W., Román-Cañizares, M., & Palacios-
Pacheco, X. (2020). Improving online education model
with machine learning and data analytics in LMS.
Applied Sciences, 10(15), 5371.
Zhang, H. (2004). The optimality of naive Bayes. In
Proceedings of the 17th International Florida Artificial
Intelligence Research Society Conference (FLAIRS)
(pp. 562–567).