oncology, its fundamental role remains
complementary to—rather than substitutive of—clinical
expertise. Through continued technological
refinement and systematic addressing of current
limitations, AI is positioned to become a cornerstone
of precision oncology, ultimately improving both
survival outcomes and quality of life for patients
worldwide.
REFERENCES
Abbosh, C., Birkbak, N. J., Wilson, G. A., Jamal-Hanjani,
M., Constantin, T., Salari, R., ... & Swanton, C. (2017).
Phylogenetic ctDNA analysis depicts early-stage lung
cancer evolution. Nature, 545(7655), 446–451.
Ali, I., Hart, G. R., Gunabushanam, G., Liang, Y.,
Muhammad, W., Nartowt, B., ... & Deng, J. (2020).
Lung nodule detection via deep reinforcement learning.
Frontiers in Oncology, 8, 108.
American Cancer Society. (2023). Lung cancer signs and
symptoms. https://www.cancer.org/cancer/lung-
cancer/detection-diagnosis-staging/signs-
symptoms.html
Ardila, D., Kiraly, A. P., Bharadwaj, S., Choi, B., Reicher,
J. J., Peng, L., ... & Shetty, S. (2019). End-to-end lung
cancer screening with three-dimensional deep learning
on low-dose chest computed tomography. Nature
Medicine, 25(6), 954–961.
Bade, B. C., & Dela Cruz, C. S. (2020). Lung cancer 2020:
Epidemiology, etiology, and prevention. Clinics in
Chest Medicine, 41(1), 1–24.
Banu, S. F., Sharmila, A., & Rajesh, G. (2021). Dual-
branch residual network for lung nodule segmentation.
Journal of Medical Imaging, 8(3), 034003.
Bu, X., Wu, B., & Huang, J. (2022). YOLOv3-based
pulmonary nodule detection in CT scans: A clinical
validation study. IEEE Access, 10, 12345–12356.
Cao, H., Liu, H., Song, E., & Hung, C.-C. (2020). Multi-
view CNN for lung nodule segmentation with attention
mechanisms. Medical Physics, 47(6), 2598–2610.
Chen, T., Liu, S., & Zhang, H. (2021). Rotation forest
model for lung cancer risk prediction using clinical
features. IEEE Access, 9, 123456–123465.
Detterbeck, F. C., Mazzone, P. J., Naidich, D. P., & Bach,
P. B. (2013). Diagnosis and management of lung cancer,
3rd ed: American College of Chest Physicians
evidence-based clinical practice guidelines. Chest,
143(5_suppl), e78S–e92S.
Dritsas, E., & Trigka, M. (2022). Lung cancer risk
prediction with machine learning models. Big Data and
Cognitive Computing, 6(4), 139.
Horn, L., Lovly, C. M., & Johnson, D. H. (2022). Chapter
74: Neoplasms of the lung. In J. Loscalzo (Ed.),
Harrison’s principles of internal medicine (21st ed.).
McGraw-Hill.
IARC. (2024). Global cancer statistics 2024: Incidence and
mortality worldwide. Lyon, France: International
Agency for Research on Cancer.
International Agency for Research on Cancer. (2020).
GLOBOCAN 2020: Cancer incidence, mortality and
prevalence worldwide. Retrieved from
https://gco.iarc.fr/
Liu, X., Rivera, S. C., Moher, D., Calvert, M. J., &
Denniston, A. K. (2020). Reporting guidelines for
clinical trial reports for interventions involving
artificial intelligence: The CONSORT-AI extension.
Nature Medicine, 26(9), 1364–1374.
Mazzone, P. J., Gould, M. K., Arenberg, D. A., Chen, A. C.,
Choi, H. K., Detterbeck, F. C., ... & Wiener, R. S.
(2021). Screening for lung cancer: CHEST guideline
and expert panel report. Chest, 160(5), e427–e494.
National Cancer Institute. (2022). Non-small cell lung
cancer treatment (PDQ®)–Patient version.
https://www.cancer.gov/types/lung/patient/non-small-
cell-treatment-pdq
National Lung Screening Trial Research Team. (2011).
Reduced lung-cancer mortality with low-dose
computed tomographic screening. New England
Journal of Medicine, 365(5), 395–409.
Planchard, D., Popat, S., Kerr, K., Novello, S., Smit, E. F.,
Faivre-Finn, C., ... & Peters, S. (2018). Metastatic non-
small cell lung cancer: ESMO Clinical Practice
Guidelines for diagnosis, treatment and follow-up.
Annals of Oncology, 29(Supplement_4), iv192–iv237.
Raut, S., Patil, S., & Shelke, G. (2021). Lung cancer
detection using machine learning approach.
International Journal of Advance Scientific Research
and Engineering Trends, 6(1), 47–55.
Shah, A. A., Khan, S. H., & Lee, Y.-S. (2023). Ensemble
deep learning for lung nodule detection using weighted
feature fusion. Scientific Reports, 13(1), 6789.
Tammemägi, M. C., Katki, H. A., Hocking, W. G., Church,
T. R., Caporaso, N., Kvale, P. A., ... & Berg, C. D.
(2013). Selection criteria for lung-cancer screening.
New England Journal of Medicine, 368(8), 728–736.
Wang, L., Ding, W., Mo, Y., & Wang, S. (2022). Deep
learning in lung cancer pathological diagnosis: A
review. IEEE Journal of Biomedical and Health
Informatics, 26(7), 3520–3532.
Zhang, Y., Li, X., & Wang, Z. (2020). Machine learning-
based lung nodule detection using C4.5 decision trees.
Journal of Medical Imaging, 7(2), 024501.
Zhao, X., Liu, L., Qi, S., Teng, Y., Li, J., & Qian, W. (2018).
AG-CNN: Adaptive gabor-based CNN for lung nodule
classification. Medical Image Analysis, 48, 1–13.
Zhu, W., Liu, C., Fan, W., & Xie, X. (2017). DeepLung:
Deep 3D dual path nets for automated pulmonary
nodule detection and classification. 2018 IEEE Winter
Conference on Applications of Computer Vision
(WACV), 673–681.