Li, M., Fu, X., & Li, D. (2020). Diabetes Prediction Based
on XGBoost Algorithm. IOP Conference Series:
Materials Science and Engineering, 768(7).
https://doi.org/10.1088/1757-899X/768/7/072093
Li, W., Peng, X., Cheng, K., Wang, H., Xu, Q., Wang, B.,
& Che, J. (2020). A Short-Term Regional Wind Power
Prediction Method Based on XGBoost and Multi-stage
Features Selection. 2020 IEEE Student Conference on
Electric Machines and Systems, SCEMS 2020, 614–
618.
https://doi.org/10.1109/SCEMS48876.2020.9352249
Li, X., Leung, F. H. F., Su, S., & Ling, S. H. (2022). Sleep
Apnea Detection Using Multi-Error-Reduction
Classification System with Multiple Bio-Signals.
Sensors, 22(15), 1–17.
https://doi.org/10.3390/s22155560
Li, X., Wang, J., Geng, Z., Jin, Y., & Xu, J. (2023). Short-
term Wind Power Prediction Method Based on Genetic
Algorithm Optimized XGBoost Regression Model.
Journal of Physics: Conference Series, 2527(1).
https://doi.org/10.1088/1742-6596/2527/1/012061
Liu, G., Zhou, J., Jia, B., He, F., Yang, Y., & Sun, N.
(2019). Advance short-term wind energy quality
assessment based on instantaneous standard deviation
and variogram of wind speed by a hybrid method.
Applied Energy, 238(January), 643–667.
https://doi.org/10.1016/j.apenergy.2019.01.105
Ma, Z., Chang, H., Sun, Z., Liu, F., Li, W., Zhao, D., &
Chen, C. (2020). Very Short-Term Renewable Energy
Power Prediction Using XGBoost Optimized by TPE
Algorithm. 2020 4th International Conference on
HVDC, HVDC 2020, 1236–1241.
https://doi.org/10.1109/HVDC50696.2020.9292870
Mustaqeem, Ishaq, M., & Kwon, S. (2022). A CNN-
Assisted deep echo state network using multiple Time-
Scale dynamic learning reservoirs for generating Short-
Term solar energy forecasting. Sustainable Energy
Technologies and Assessments, 52(PC), 102275.
https://doi.org/10.1016/j.seta.2022.102275
Phan, Q. T., Wu, Y. K., & Phan, Q. D. (2021). A hybrid
wind power forecasting model with xgboost, data
preprocessing considering different nwps. Applied
Sciences (Switzerland), 11(3), 1–19.
https://doi.org/10.3390/app11031100
RajasundrapandiyanLeebanon, T., Murugan, N. S. S.,
Kumaresan, K., & Jeyabose, A. (2025). Long-term
solar radiation forecasting in India using EMD, EEMD,
and advanced machine learning algorithms. In
Environmental Monitoring and Assessment (Vol. 197,
Issue 3). https://doi.org/10.1007/s10661-025-13738-8
Rathore, H., Meena, H. K., & Jain, P. (2023). Prediction of
EV Energy consumption Using Random Forest And
XGBoost. Proceedings - 2nd International Conference
on Power Electronics and Energy, ICPEE 2023, 1–6.
https://doi.org/10.1109/ICPEE54198.2023.10060798
Renewable Energy Agency, I. (2025). Renewable Capacity
Statistics 2025. In Irena. www.irena.org
Shang, Y., Miao, L., Shan, Y., Gnyawali, K. R., Zhang, J.,
& Kattel, G. (2022). A Hybrid Ultra-Short-Term and
Short-Term Wind Speed Forecasting Method Based on
CEEMDAN and GA-BPNN. Weather and Forecasting,
37(4), 415–428. https://doi.org/10.1175/WAF-D-21-
0047.1
Shi, R., Xu, X., Li, J., & Li, Y. (2021). Prediction and
analysis of train arrival delay based on XGBoost and
Bayesian optimization. Applied Soft Computing, 109,
107538. https://doi.org/10.1016/j.asoc.2021.107538
Shukla, S., & Pasari, S. (2025). Short-term wind speed
prediction with adaptive signal processing based hybrid
statistical models. In Energy Systems (Issue
0123456789). Springer Berlin Heidelberg.
https://doi.org/10.1007/s12667-025-00727-6
Yan, X., Wang, L., Zhu, J., Wang, S., Zhang, Q., & Xin, Y.
(2022). Automatic Obstructive Sleep Apnea Detection
Based on Respiratory Parameters in Physiological
Signals. 2022 IEEE International Conference on
Mechatronics and Automation, ICMA 2022, 461–466.
https://doi.org/10.1109/ICMA54519.2022.9856347
Yelgeç, M. A., & Bingöl, O. (2022). Ayrık dalgacık
dönüşümü ve Xgboost ile rüzgâr gücü tahmini.
Uluslararası Teknolojik Bilimler Dergisi, 14(2), 58–65.
https://doi.org/10.55974/utbd.1132336
Yuzgec, U., Dokur, E., & Balci, M. (2024). A novel hybrid
model based on Empirical Mode Decomposition and
Echo State Network for wind power forecasting.
Energy, 300(April), 131546.
https://doi.org/10.1016/j.energy.2024.131546
Zhang, T., Zhang, X., Rubasinghe, O., Liu, Y., Chow, Y.
H., Iu, H. H. C., & Fernando, T. (2024). Long-Term
Energy and Peak Power Demand Forecasting Based on
Sequential-XGBoost. IEEE Transactions on Power
Systems, 39(2), 3088–3104.
https://doi.org/10.1109/TPWRS.2023.3289400
Zheng, H., & Wu, Y. (2019). A XGBoost Model with
Weather Similarity Analysis and Feature Engineering
for Short-Term Wind Power Forecasting. Applied
Sciences (Switzerland).