Communications in Computer and Information
Science, 1124 CCIS, 178–188.
https://doi.org/10.1007/978-3-030-34989-9_14
González-Herbón, R., González-Mateos, G., Rodríguez-
Ossorio, J. R., Domínguez, M., Alonso, S., & Fuertes,
J. J. (2024). An Approach to Develop Digital Twins in
Industry. Sensors 2024, Vol. 24, Page 998, 24(3), 998.
https://doi.org/10.3390/S24030998
Grant, G. B., Seager, T. P., Massard, G., & Nies, L. (2010).
Information and Communication Technology for
Industrial Symbiosis. Journal of Industrial Ecology,
14(5), 740–753. https://doi.org/10.1111/J.1530-
9290.2010.00273.X
Grant, Seager et al 2010 - Information and Communication
Technology. (n.d.).
Iyer, S. V, Sangwan, K. S., & Dhiraj. (2024). Development
of an Industrial Symbiosis Framework through
Digitalization in the Context of Industry 4.0. Procedia
CIRP, 122, 515–520.
https://doi.org/https://doi.org/10.1016/j.procir.2024.01.
075
Kang, J. S., Chung, K., & Hong, E. J. (2021). Multimedia
knowledge‐based bridge health monitoring using
digital twin. Multimedia Tools and Applications,
80(26–27), 34609–34624.
https://doi.org/10.1007/S11042-021-10649-X
Kaur, M. J., Mishra, V. P., & Maheshwari, P. (2019). The
Convergence of Digital Twin, IoT, and Machine
Learning: Transforming Data into Action. Internet of
Things, 3–17. https://doi.org/10.1007/978-3-030-
18732-3_1
Kerkeni, R., Mhalla, A., & Bouzrara, K. (2025).
Unsupervised Learning and Digital Twin Applied to
Predictive Maintenance for Industry 4.0. Journal of
Electrical and Computer Engineering, 2025(1),
3295799. https://doi.org/10.1155/JECE/3295799
Khalyasmaa, A. I., Eroshenko, S. A., Stepanova, A. I., &
Matrenin, P. V. (2023). Review of the Digital Twin
Technology Applications for Electrical Equipment
Lifecycle Management. Mathematics, 11.
https://doi.org/10.3390/math11061315
Kosmol, L. (2019). Sharing is Caring - Information and
Knowledge in Industrial Symbiosis: A Systematic
Review. Proceedings - 21st IEEE Conference on
Business Informatics, CBI 2019, 01, 21–30.
https://doi.org/10.1109/CBI.2019.00010
Lampropoulos, G., & Siakas, K. (2023). Enhancing and
securing cyber-physical systems and Industry 4.0
through digital twins: A critical review. Journal of
Software: Evolution and Process, 35(7), e2494.
https://doi.org/10.1002/SMR.2494
Lyu, Z. (2024). Handbook of Digital Twins. Handbook of
Digital Twins, 1–902.
https://doi.org/10.1201/9781003425724/HANDBOOK
-DIGITAL-TWINS-ZHIHAN-LYU/RIGHTS-AND-
PERMISSIONS
Ma, S., Ding, W., Liu, Y., Ren, S., & Yang, H. (2022).
Digital twin and big data-driven sustainable smart
manufacturing based on information management
systems for energy-intensive industries. Applied
Energy, 326, 119986.
https://doi.org/10.1016/J.APENERGY.2022.119986
Nath, S. van S. P. I. D. (2021). Building Industrial Digital
Twins. Packt Publishing; Safari.
Okpala Charles Chikwendu, -, Nwankwo Constance
Obiuto, -, & Udu Chukwudi Emeka, -. (2025). Digital
twin applications for predicting and controlling
vibrations in manufacturing systems. World Journal of
Advanced Research and Reviews, 25.
https://doi.org/10.30574/wjarr.2025.25.1.3821
Park, K. T., Lee, D., & Noh, S. Do. (2020). Operation
Procedures of a Work-Center-Level Digital Twin for
Sustainable and Smart Manufacturing. International
Journal of Precision Engineering and Manufacturing -
Green Technology, 7(3), 791–814.
https://doi.org/10.1007/S40684-020-00227-
1/METRICS
Pylianidis, C., Osinga, S., & Athanasiadis, I. N. (2021).
Introducing digital twins to agriculture. Computers and
Electronics in Agriculture, 184.
https://doi.org/10.1016/j.compag.2020.105942
Rassolkin, A., Rjabtsikov, V., Vaimann, T., Kallaste, A.,
Kuts, V., & Partyshev, A. (2020). Digital Twin of an
Electrical Motor Based on Empirical Performance
Model. 2020 11th International Conference on
Electrical Power Drive Systems, ICEPDS 2020 -
Proceedings.
https://doi.org/10.1109/ICEPDS47235.2020.9249366
Ren, S., Zhang, Y., Liu, Y., Sakao, T., Huisingh, D., &
Almeida, C. M. V. B. (2019). A comprehensive review
of big data analytics throughout product lifecycle to
support sustainable smart manufacturing: A
framework, challenges and future research directions.
Journal of Cleaner Production, 210, 1343–1365.
https://doi.org/10.1016/J.JCLEPRO.2018.11.025
Rodič, B. (2017). Industry 4.0 and the New Simulation
Modelling Paradigm. Organizacija, 50(3), 193–207.
https://doi.org/10.1515/ORGA-2017-0017
Ruppert, T., & Abonyi, J. (2020). Integration of real-time
locating systems into digital twins. Journal of
Industrial Information Integration, 20.
https://doi.org/10.1016/j.jii.2020.100174
Salis, A., Marguglio, A., De Luca, G., Razzetti, S.,
Quadrini, W., & Gusmeroli, S. (2023). An Edge-Cloud
based Reference Architecture to support cognitive
solutions in Process Industry. Procedia Computer
Science, 217, 20–30.
https://doi.org/10.1016/J.PROCS.2022.12.198
Scafà, M., Marconi, M., & Germani, M. (2020). A critical
review of symbiosis approaches in the context of
Industry 4.0☆. Journal of Computational Design and
Engineering, 7(3), 269–278.
https://doi.org/10.1093/JCDE/QWAA022
Senna, P. P., Almeida, A. H., Barros, A. C., Bessa, R. J., &
Azevedo, A. L. (2020). Architecture Model for a
Holistic and Interoperable Digital Energy Management
Platform. Procedia Manufacturing, 51, 1117–1124.
https://doi.org/https://doi.org/10.1016/j.promfg.2020.1
0.157