Modelling, 194, 102497.
https://doi.org/https://doi.org/10.1016/j.ocemod.2025.
102497
Liu, C. M., Rim, D., Baraldi, R., & LeVeque, R. J. (2021).
Comparison of Machine Learning Approaches for
Tsunami Forecasting from Sparse Observations. Pure
and Applied Geophysics, 178(12), 5129–5153.
https://doi.org/10.1007/s00024-021-02841-9
M, Y., & Mohamed, S. (2024). Computational Analysis of
Tsunami Wave Run-Up by Implementation of
TIMPULSE-SIM Model with Japan and Indonesian
Seismic Tsunami. WSEAS TRANSACTIONS ON
ENVIRONMENT AND DEVELOPMENT, 20, 701–720.
https://doi.org/10.37394/232015.2024.20.67
Mulia, I. E., Ueda, N., Miyoshi, T., Gusman, A. R., &
Satake, K. (2022). Machine learning-based tsunami
inundation prediction derived from offshore
observations. Nature Communications, 13(1).
https://doi.org/10.1038/s41467-022-33253-5
NOAA. (n.d.-a). NCEI/WDS Global Historical Tsunami
Database, 2100 BC to Present.
https://doi.org/10.7289/V5PN93H7
NOAA. (n.d.-b). NCEI/WDS Global Significant Volcanic
Eruptions Database, 4360 BC to Present.
https://doi.org/10.7289/V5JW8BSH
Purba, J., Priadi, R., Frando, M., & Pertiwi, I. (2025). The
Purpri Fault: A Newly Identified Active Fault in East
Kolaka, Indonesia, Based on HypoDD and DInSAR.
Geološki anali Balkanskoga poluostrva, 86(1), 121–
143. https://doi.org/10.2298/GABP250417005P
Purba, J., Restele, L. O., Hadini, L. O., Usman, I., Hasria,
H., & Harisma, H. (2024). SPATIAL STUDY OF
SEISMIC HAZARD USING CLASSICAL
PROBABILISTIC SEISMIC HAZARD ANALYSIS
(PSHA) METHOD IN THE KENDARI CITY AREA.
Indonesian Physical Review, 7(3), 300–318.
https://doi.org/10.29303/ipr.v7i3.325
PuSGeN. (2024). Peta Sumber Dan Bahaya Gempa
Indonesia Tahun 2024.
Sadaka, G., & Dutykh, D. (2020). Adaptive Numerical
Modelling of Tsunami Wave Generation and
Propagation with FreeFem++.
https://doi.org/10.20944/preprints202008.0616.v1
Satish, S., Gonaygunta, H., Yadulla, A. R., Kumar, D.,
Maturi, M. H., Meduri, K., De La Cruz, E., Nadella, G.
S., & Sajja, G. S. (2025). Forecasting the Unseen:
Enhancing Tsunami Occurrence Predictions with
Machine-Learning-Driven Analytics. Computers,
14(5). https://doi.org/10.3390/computers14050175
Siswanto, S., Ngatono, & Febri Saputra, S. (2022).
Prototype Sistem Peringatan Dini Bencana Gempa
Bumi Dan Tsunami Berbasis Internet of Things.
PROSISKO: Jurnal Pengembangan Riset dan
Observasi Sistem Komputer, 9(1), 60–66.
https://doi.org/10.30656/prosisko.v9i1.4743
Sukmana, H. T., Durachman, Y., Amri, & Supardi. (2024).
Comparative Analysis of SVM and RF Algorithms for
Tsunami Prediction: A Performance Evaluation Study.
Journal of Applied Data Sciences, 5
(1), 84–99.
https://doi.org/10.47738/jads.v5i1.159
Takahashi, N., Imai, K., Ishibashi, M., Sueki, K., Obayashi,
R., Tanabe, T., Tamazawa, F., Baba, T., & Kaneda, Y.
(2017). Real-time tsunami prediction system using
DONET. Journal of Disaster Research, 12, 766–774.
https://doi.org/10.20965/jdr.2017.p0766
Trogrlić, R., van den Homberg, M., Budimir, M.,
McQuistan, C., Sneddon, A., & Golding, B. (2022).
Early Warning Systems and Their Role in Disaster Risk
Reduction (hal. 11–46). https://doi.org/10.1007/978-3-
030-98989-7
Tursina, & Syamsidik. (2019). Reconstruction of the 2004
Tsunami Inundation Map in Banda Aceh Through
Numerical Model and Its Validation with Post-Tsunami
Survey Data. IOP Conference Series: Earth and
Environmental Science, 273(1).
https://doi.org/10.1088/1755-1315/273/1/012008
Wang, Y., Imai, K., Miyashita, T., Ariyoshi, K., Takahashi,
N., & Satake, K. (2023). Coastal tsunami prediction in
Tohoku region, Japan, based on S-net observations
using artificial neural network. Earth, Planets and
Space, 75(1). https://doi.org/10.1186/s40623-023-
01912-6
Wang, Y., & Satake, K. (2021). Real-time tsunami data
assimilation of S-Net pressure gauge records during the
2016 fukushima earthquake. Seismological Research
Letters, 92(4), 2145–2155.
https://doi.org/10.1785/0220200447
Wibowo, G. C. adhi, Prasetyo, S. Y. J., & Sembiring, I.
(2023). Tsunami Vulnerability and Risk Assessment in
Banyuwangi District using machine learning and
Landsat 8 image data. MATRIK : Jurnal Manajemen,
Teknik Informatika dan Rekayasa Komputer, 22(2),
365–380. https://doi.org/10.30812/matrik.v22i2.2677
Wolpert, D. (1992). Stacked Generalization. Neural
Networks, 5, 241–259. https://doi.org/10.1016/S0893-
6080(05)80023-1
Yang, Y., Dunham, E. M., Barnier, G., & Almquist, M.
(2019). Tsunami Wavefield Reconstruction and
Forecasting Using the Ensemble Kalman Filter.
Geophysical Research Letters, 46(2), 853–860.
https://doi.org/https://doi.org/10.1029/2018GL080644
Zamroni, A., Rizki Widiatmoko, F., & Siamasahari, M.
(2021). The Sunda Strait tsunami, Indonesia: learning
from the similar events in the past.
https://doi.org/10.4108/eai.30-8-2021.2311510
Zhonghan, C. (2024). Application of UAV remote sensing
in natural disaster monitoring and early warning: an
example of flood and mudslide and earthquake
disasters. Highlights in Science, Engineering and
Technology, 85, 924–933.
https://doi.org/10.54097/zak5hp77