ACKNOWLEDGEMENTS
The authors express their gratitude to colleagues and
collaborators for their valuable support, and to the
laboratory staff for assistance during data collection.
Special thanks are also due to the reviewers for their
constructive feedback, which improved the quality of
this manuscript. The use of generative AI tools is
acknowledged for enhancing the language and
readability of this paper under human oversight.
REFERENCES
Alhwaiti, Y., Khan, M., Asim, M., Siddiqi, M. H., Ishaq,
M., & Alruwaili, M. (2025). Leveraging YOLO deep
learning models to enhance plant disease identification.
Scientific Reports, 15(1).
https://doi.org/10.1038/s41598-025-92143-0
Benchabane, A., & Charif, F. (2025). Enhanced COVID-19
Detection Through Combined Image Enhancement and
Deep Learning Techniques. Informatica (Slovenia),
49(16), 67–76.
https://doi.org/10.31449/inf.v49i16.5869
Buriboev, A. S., Khashimov, A., Abduvaitov, A., & Jeon,
H. S. (2024). CNN-Based Kidney Segmentation Using
a Modified CLAHE Algorithm. Sensors, 24(23).
https://doi.org/10.3390/s24237703
Gibbs, J. A., & Burgess, A. J. (2024). Application of deep
learning for the analysis of stomata: a review of current
methods and future directions. In Journal of
Experimental Botany (Vol. 75, Issue 21, pp. 6704–
6718). Oxford University Press.
https://doi.org/10.1093/jxb/erae207
Gibbs, J. A., Mcausland, L., Robles-Zazueta, C. A.,
Murchie, E. H., & Burgess, A. J. (2021). A Deep
Learning Method for Fully Automatic Stomatal
Morphometry and Maximal Conductance Estimation.
Frontiers in Plant Science, 12.
https://doi.org/10.3389/fpls.2021.780180
Haworth, M., Marino, G., Materassi, A., Raschi, A., Scutt,
C. P., & Centritto, M. (2023). The functional
significance of the stomatal size to density relationship:
Interaction with atmospheric [CO2] and role in plant
physiological behaviour. In Science of the Total
Environment (Vol. 863). Elsevier B.V.
https://doi.org/10.1016/j.scitotenv.2022.160908
Jeon, J. J., Park, J. Y., & Eom, I. K. (2024). Low-light
image enhancement using gamma correction prior in
mixed color spaces. Pattern Recognition, 146.
https://doi.org/10.1016/j.patcog.2023.110001
Liu, H., Zhao, Z., & She, Q. (2021). Self-supervised ECG
pre-training. Biomedical Signal Processing and
Control, 70.
https://doi.org/10.1016/j.bspc.2021.103010
Mim, S. A., Cheng, J., & Zhang, J. (2025). Fusion-based
framework for low-light image enhancement using
BM3D filter and adaptive gamma correction. Optics
and Laser Technology, 192.
https://doi.org/10.1016/j.optlastec.2025.113662
Narla, V. L., Suresh, G., Rao, C. S., Awadh, M. Al, &
Hasan, N. (2024). A multimodal approach with firefly
based CLAHE and multiscale fusion for enhancing
underwater images. Scientific Reports, 14(1).
https://doi.org/10.1038/s41598-024-76468-w
Utiarahman, S. A., Indrabayu, & Nurtanio, I. (2025).
Performance Evaluation of YOLOv8 to YOLOv11 for
Accurate Detection and Classification of Stomata in
Microscopic Images of Herbal Plants. Proceedings of
the NMITCON 2025 International Conference. IEEE.
https://doi.org/10.1109/NMITCON65824.2025.11188
393
Wang, Y., Liu, Z., Liu, J., Xu, S., & Liu, S. (2023). Low-
Light Image Enhancement with Illumination-Aware
Gamma Correction and Complete Image Modelling
Network. http://arxiv.org/abs/2308.08220
Yang, Z., Liao, Y., Chen, Z., Lin, Z., Huang, W., Liu, Y.,
Liu, Y., Fan, Y., Xu, J., Xu, L., & Mu, J. (2025).
StomaYOLO: A Lightweight Maize Phenotypic
Stomatal Cell Detector Based on Multi-Task Training.
Plants, 14(13). https://doi.org/10.3390/plants14132070
Zhang, F., Ren, F., & Li, J. (2021). Automatic stomata
recognition and measurement based on improved
YOLO deep learning model and entropy rate superpixel
algorithm. Ecological Informatics, 68, 101521.
https://doi.org/10.1016/j.ecoinf.2021.101521
Zhang, F., Wang, B., Lu, F., & Zhang, X. (2023). Rotating
Stomata Measurement Based on Anchor-Free Object
Detection and Stomata Conductance Calculation. Plant
Phenomics, 5.
https://doi.org/10.34133/plantphenomics.0106