Alsaber, A. R., Al-Herz, A., Alawadhi, B., Doush, I. A.,
Setiya, P., AL-Sultan, A. T., Saleh, K., Al-Awadhi, A.,
Hasan, E., Al-Kandari, W., Mokaddem, K., Ghanem,
A. A., Attia, Y., Hussain, M., AlHadhood, N., Ali, Y.,
Tarakmeh, H., Aldabie, G., AlKadi, A., & Alhajeri, H.
(2024). Machine learning-based remission prediction in
rheumatoid arthritis patients treated with biologic
disease-modifying anti-rheumatic drugs: findings from
the Kuwait rheumatic disease registry. Frontiers in Big
Data, 7. https://doi.org/10.3389/fdata.2024.1406365
Alzami, F., Salam, A., Rizqa, I., Irawan, C., Andono, P. N.,
Aqmala, D., & Sartika, M. (2024). Demand Prediction
for Food and Beverage SMEs Using SARIMAX and
Weather Data. Ingenierie Des Systemes d’Information,
29(1), 293–300. https://doi.org/10.18280/isi.290129
Aravazhi, A. (2021). Hybrid Machine Learning Models for
Forecasting Surgical Case Volumes at a Hospital. AI
(Switzerland), 2(4), 512–526.
https://doi.org/10.3390/ai2040032
Ashtar, D., Mohammadi Ziabari, S. S., & Alsahag, A. M.
M. (2025). Hybrid Forecasting for Sustainable
Electricity Demand in The Netherlands Using
SARIMAX, SARIMAX-LSTM, and Sequence-to-
Sequence Deep Learning Models. Sustainability
(Switzerland), 17(16).
https://doi.org/10.3390/su17167192
Benitez, I. B., Ibañez, J. A., Lumabad, C. I. I. I. D., Cañete,
J. M., & Principe, J. A. (2023). Day-Ahead Hourly
Solar Photovoltaic Output Forecasting Using
SARIMAX, Long Short-Term Memory, and Extreme
Gradient Boosting: Case of the Philippines.
Energies_MDPI, 16.
https://doi.org/10.3390/en16237823
Fan, B., Peng, J., Guo, H., Gu, H., Xu, K., & Wu, T. (2022).
Accurate Forecasting of Emergency Department
Arrivals With Internet Search Index and Machine
Learning Models: Model Development and
Performance Evaluation. JMIR Medical Informatics,
10(7), 1–17. https://doi.org/10.2196/34504
Lee, J., Cho, Y., Lee, J., & Ph, D. (n.d.). National - scale
electricity peak load forecasting : Traditional , machine
learning , or hybrid model ? National - scale electricity
peak load forecasting : Traditional , machine learning
, or hybrid model ? 1–42.
Man, H., Huang, H., Qin, Z., & Li, Z. (2023). Analysis of a
SARIMA-XGBoost model for hand, foot, and mouth
disease in Xinjiang, China. Epidemiology and Infection,
151. https://doi.org/10.1017/S0950268823001905
Pankratz.A. (2019). Forecasting with Unvariate Box-
Jenkins Model Concept and Cases. In John Wily &
Sons,Inc. Indiana (Vol. 11, Issue 1).
http://scioteca.caf.com/bitstream/handle/123456789/10
91/RED2017-Eng-
8ene.pdf?sequence=12&isAllowed=y%0Ahttp://dx.do
i.org/10.1016/j.regsciurbeco.2008.06.005%0Ahttps://
www.researchgate.net/publication/305320484_SISTE
M_PEMBETUNGAN_TERPUSAT_STRATEGI_ME
LESTARI
Satibi, S., Copalcanty, F. A., Tuko, E., & Sawatiandari, L.
G. (2020). Pharmaceutical suply chain management in
supporting drugs avaibility in the jkn era in indonesia.
International Journal of Scientific and Technology
Research, 9(4), 3034–3038.
Teja, M. D., & Rayalu, G. M. (2025). Hybrid time series
and machine learning models for forecasting
cardiovascular mortality in India: an age specific
analysis. BMC Public Health, 25(1).
https://doi.org/10.1186/s12889-025-23318-7
Yulianti, R., Amanda, N. T., Notodiputro, K. A., Angraini,
Y., & Mualifah, L. N. A. (2025). Comparison of Sarima
and Sarimax Methods for Forecasting Harvested Dry
Grain Prices in Indonesia. Barekeng, 19(1), 319–330.
https://doi.org/10.30598/barekengvol19iss1pp319-330
Zhao, D., & Zhang, R. (2023). A new hybrid model
SARIMA-ETS-SVR for seasonal influenza incidence
prediction in mainland China. Journal of Infection in
Developing Countries, 17(11), 1581–1590.
https://doi.org/10.3855/jidc.18037