REFERENCES
Ali, M. L., & Zhang, Z. (2024). The YOLO Framework: A
Comprehensive Review of Evolution, Applications,
and Benchmarks in
Object Detection. In Computers
(Vol. 13, Issue
12). Multidisciplinary Digital
Publishing Institute (MDPI).
https://doi.org/10.3390/computers13120336
Ang, L., Rahim, S. K. N. A., Hamzah, R., Aminuddin,
R., &
Yousheng, G. (2024). YOLO algorithm with hybrid
attention feature pyramid network for solder joint
defect detection. http://arxiv.org/abs/2401.01214
Asgar, M. R. G., Hidayat, R., & Bejo, A. (2023).
Comparison Euclidean Distance and Manhattan
Distance as Classification in Speech Recognition
System. In Proceedings of the International
Conference on Educational Management and
Technology (ICEMT 2022) (pp. 454–463). Atlantis
Press SARL. https://doi.org/10.2991/978-2- 494069-
95-4_54
Badgujar, C. M., Poulose, A., & Gan, H. (2024).
Agricultural Object Detection with You Look Only
Once (YOLO) Algorithm: A Bibliometric and
Systematic Literature Review.
Bi, H., Wen, V., & Xu, Z. (2023). Comparing one- stage
and two-stage learning strategy in object detection.
Applied and Computational
Engineering, 5(1),
171–177. https://doi.org/10.54254/2755-
2721/5/20230556 Butler, J., & Leung, H. (2024). A
Heatmap-Supplemented R-CNN Trained Using an
Inflated IoU for Small Object Detection. Remote
Sensing, 16(21). https://doi.org/10.3390/rs16214065
Cao, D., Luo, W., Tang, R., Liu, Y., Zhao, J., Li, X., &
Yuan, L. (2025). Research on Apple Detection and
Tracking Count in Complex Scenes Based on the
Improved YOLOv7-Tiny-PDE. Agriculture
(Switzerland), 15(5).
https://doi.org/10.3390/agriculture15050483
Cao, X., Xu, Y., He, J., Liu, J., & Wang, Y. (2024). A
Lightweight Traffic Sign Detection Method
With
Improved YOLOv7-Tiny. IEEE Access, 12, 105131–
105147.
https://doi.org/10.1109/ACCESS.2024.3435384
Chen, Z., Qian, M., Zhang, X., & Zhu, J. (2024).
Chinese Bayberry Detection in an Orchard
Environment Based on an Improved YOLOv7-
Tiny Model. Agriculture (Switzerland), 14(10).
https://doi.org/10.3390/agriculture14101725
Cheng, D., Zhao, Z., & Feng, J. (2024). Rice Diseases
Identification Method Based on Improved YOLOv7-
Tiny. Agriculture (Switzerland), 14(5).
https://doi.org/10.3390/agriculture14050709
Deepti Raj, G., & Prabadevi, B. (2024). MoL-
YOLOv7: Streamlining Industrial Defect
Detection
With an Optimized YOLOv7 Approach. IEEE Access,
12, 117090–117101.
https://doi.org/10.1109/ACCESS.2024.3447035
Dewi, C., Chen, R.-C., Yu, H., & Jiang, X. (2023).
Robust Detection Method for Improving Small
Traffic
Sign Recognition Based on Spatial Pyramid Pooling.
Dewi, C., & Juli Christanto, H. (2022). Combination of
Deep Cross-Stage Partial Network and Spatial
Pyramid Pooling for Automatic Hand Detection. Big
Data and Cognitive Computing, 6(3).
https://doi.org/10.3390/bdcc6030085
Du, B., Huang, Y., Chen, J., & Huang, D. (2023).
Adaptive Sparse Convolutional Networks with
Global Context Enhancement for Faster Object
Detection on Drone Images.
https://github.com/Cuogeihong/CEASC.
Gong, H., Ma, X., & Guo, Y. (2024). Research on a
Target Detection Algorithm for Common Pests
Based
on an Improved YOLOv7-Tiny Model.
Agronomy,
14(12). https://doi.org/10.3390/agronomy14123068
Gong, H., Mu, T., Li, Q., Dai, H., Li, C., He, Z.,
Wang, W., Han, F., Tuniyazi, A., Li, H., Lang, X., Li,
Z., & Wang, B. (2022). Swin-Transformer-Enabled
YOLOv5 with Attention Mechanism for Small Object
Detection on Satellite Images. Remote Sensing,
14(12). https://doi.org/10.3390/rs14122861
Hu, S., Zhao, F., Lu, H., Deng, Y., Du, J., & Shen, X.
(2023). Improving YOLOv7-Tiny for Infrared and
Visible Light Image Object Detection on Drones.
Remote Sensing, 15(13).
https://doi.org/10.3390/rs15133214
Lee, J. H., Choi, Y. H., Lee, H. S., Park, H. J., Hong, J. S.,
Lee, J. H., Sa, S. J., Kim, Y. M., Kim, J. E., Jeong,
Y. D., & Cho, H. C. (2024). Enhanced Swine
Behavior Detection with YOLOs and a
Mixed
Efficient Layer Aggregation Network in
Real Time.
Animals, 14(23). https://doi.org/10.3390/ani14233375
Limberg, C., Melnik, A., Harter, A., & Ritter, H.
(2022). YOLO -- You only look 10647 times.
http://arxiv.org/abs/2201.06159
Liu, R., Huang, M., Wang, L., Bi, C., & Tao, Y.
(2024). PDT-YOLO: A Roadside Object- Detection
Algorithm for Multiscale and Occluded
Targets.
Sensors, 24(7). https://doi.org/10.3390/s24072302
Liu, S., Shao, F., Chu, W., Zhang, H., Zhao, D., Xue, J., &
Liu, Q. (2025). LCM-YOLO: A Small Object
Detection
Method for UAV Imagery Based on YOLOv5. IET
Image Processing, 19(1).
https://doi.org/10.1049/ipr2.70051
Lu, Guozhen, Xiong, X., & Lu, D. (2023). Research on
Visualization Method of Edge Banding Appear- ance
Quality Based on YOLOv7.
https://doi.org/10.21203/rs.3.rs-3279477/v1
Mohsan, S. A. H., Khan, M. A., Noor, F., Ullah, I., &
Alsharif, M. H. (2022). Towards the Unmanned
Aerial Vehicles (UAVs): A Comprehensive
Review.
In Drones (Vol. 6, Issue 6). Multidisciplinary
Digital Publishing Institute
(MDPI).
https://doi.org/10.3390/drones6060147
Muzammul, M., Algarni, A., Ghadi, Y. Y., & Assam, M.
(2024). Enhancing UAV Aerial Image
Analysis:
Integrating Advanced SAHI Techniques
with Real-
Time Detection Models on the VisDrone
Dataset. IEEE
Access, 12, 21621–21633.
https://doi.org/10.1109/ACCESS.2024.3363413