REFERENCES
Addi, A. Elbouzidi, M. Abid, D. Tungmunnithum, A.
Elamrani, and C. Hano, “An Overview of Bioactive
Flavonoids from Pomelos,” Appl. Sci., vol. 12, no. 1, p.
29, Dec. 2021, doi: 10.3390/app12010029.
Adelina and E. Adelina, “Identification of Morphology and
Anatomy of Local Pomelos (Citrus sp) in Doda Village
and Lempe Village, Central Lore District, Poso
Regency.”
Asriny, S. Rani, and A. F. Hidayatullah, “Pomelo Fruit
Images Classification using Convolutional Neural
Networks,” IOP Conf. Ser. Mater. Sci. Eng., vol. 803,
no. 1, p. 012020, Apr. 2020, doi: 10.1088/1757-
899x/803/1/012020.
Brigato, L., & Iocchi, L. (2021, January). A close look at
deep learning with small data. In 2020 25th
international conference on pattern recognition
(ICPR) (pp. 2490-2497). IEEE.
Chen, J. Wang, R. Xi, and Z. Ren, “Analysis of Leaf cover
on Raspberry Fruits Based on Hyperspectral
Techniques Combined with Machine Learning
Models,” Jul. 15, 2024, Springer Science and Business
Media LLC. doi: 10.21203/rs.3.rs-4607290/v1.
Dhungana, P., Fresta, M., Tamrakar, N., & Dhungana, H.
(2025, Juni 30). YOLO-Based Pipeline Monitoring in
Challenging Visual Environments
(arXiv:2507.02967v1).
https://doi.org/10.48550/arXiv.2507.02967
Hidayatullah, N. Syakrani, M. R. Sholahuddin, T. Gelar,
and R. Tubagus, “YOLOv8 to YOLO11: A
Comprehensive Architecture In-depth Comparative
Review.”
Ilyana, A., Nurdin, N., & Maryana, M. (2025). Real-Time
Detection of Coffee Cherry Ripeness Using YOLOv11.
Journal of Applied Informatics and Computing, 9(4).
https://doi.org/10.30871/jaic.v9i4.9735.
Indrabayu, Mar’atuttahirah, and I. S. Areni, “Automatic
Counting of Chili Ripeness on Computer Vision for
Industri 4.0,” in 2019 IEEE International Conference
on Industry 4.0, Artificial Intelligence, and
Communications Technology (IAICT), BALI,
Indonesia: IEEE, Jul. 2019, pp. 14–18, doi:
10.1109/iciaict.2019.8784858.
Indrabayu, A. R. Fatmasari, and I. Nurtanio, “A Colour
Space Based Detection for Cervical Cancer Using
Fuzzy C-Means Clustering,” in Proceedings of the 6th
International Conference on Bioinformatics and
Biomedical Science, Singapore: ACM, Jun. 2017, pp.
137–141, doi: 10.1145/3121138.3121196.
Janowski, R. Kaźmierczak, C. Kowalczyk, and J. Szulwic,
“Detecting Apples in the Wild: Potential for Harvest
Quantity Estimation,” Sustainability, vol. 13, no. 14, p.
8054, Jul. 2021, doi: 10.3390/su13148054.
Khattak et al., “Automatic Detection of Pomelo and Leaves
Diseases Using Deep Neural Network Model,” IEEE
Access, vol. 9, pp. 112942–112954, 2021, doi:
10.1109/access.2021.3096895.
Liu, Y. Tao, J. Liang, K. Li, and Y. Chen, “Object Detection
Based on YOLO Network.”
Lyu, R. Li, Y. Zhao, Z. Li, R. Fan, and S. Liu, “Green Citrus
Detection and Counting in Orchards Based on
YOLOv5-CS and AI Edge System,” Sensors, vol. 22,
no. 2, p. 576, Jan. 2022, doi: 10.3390/s22020576.
Mpouziotas, D., Karvelis, P., Tsoulos, I., & Stylios, C.
(2023). Automated wildlife bird detection from drone
footage using computer vision techniques. Applied
Sciences, 13(13), 7787.
Pathak, H. Gangwar, and A. S. Jalal, “Performance
Analysis of Gradient Descent Methods for
Classification of Pomelos using Deep Neural
Network,” in 2020 7th International Conference on
Computing for Sustainable Global Development
(INDIACom), New Delhi, India: IEEE, Mar. 2020, pp.
68–72, doi: 10.23919/indiacom49435.2020.9083723.
Sapkota, R., & Karkee, M. (2025, Januari 26). Comparing
YOLOv11 and YOLOv8 for instance segmentation of
occluded and non-occluded immature green fruits in
complex orchard environment (arXiv:2410.19869v3).
https://doi.org/10.48550/arXiv.2410.19869
Sugadev, K. Sucharitha, I. R. Sheeba, and B. Velan,
“Computer vision based automated billing system for
fruit stores,” in 2020 Third International Conference on
Smart Systems and Inventive Technology (ICSSIT),
Tirunelveli, India: IEEE, Aug. 2020, pp. 1337–1342,
doi: 10.1109/icssit48917.2020.9214101.
Wajid, N. K. Singh, P. Junjun, and M. A. Mughal,
“Recognition of Ripe, Unripe and Scaled Condition of
Pomelo Citrus Based on Decision Tree Classification.”
Wei et al., “GFS-YOLO11: A Maturity Detection Model
for Multi-Variety Tomato,” Agronomy, vol. 14, no. 11,
p. 2644, Nov. 2024, doi: 10.3390/agronomy14112644.
Xu, H. Zhao, O. M. Lawal, X. Lu, R. Ren, and S. Zhang,
“An Automatic Jujube Fruit Detection and Ripeness
Inspection Method in the Natural Environment,”
Agronomy, vol. 13, no. 2, p. 451, Feb. 2023, doi:
10.3390/agronomy13020451.
Zhang, S. Ye, S. Zhao, W. Wang, and C. Xie, “Pear Object
Detection in Complex sOrchard Environment Based on
Improved YOLO11,” Symmetry, vol. 17, no. 2, p. 255,
Feb. 2025, doi: 10.3390/sym17020255.