ensuring the embedded antenna operates reliably and
maintains long-term durability.
ACKNOWLEDGEMENTS
The authors gratefully acknowledge the availability
of Ansys HFSS under an academic research license
provided by Department of Electrical Engineering
University of Cokroaminoto Makassar, which was
instrumental in conducting the electromagnetic
simulations presented in this study.
This research was funded by the Ministry of
Higher Education, Science, and Technology of the
Republic of Indonesia, through the Directorate
General of Research and Development, under the
Basic Research Scheme for the 2025 Fiscal Year.
REFERENCES
Albzaie, M. (2024). Smart materials and smart structures:
Transforming engineering and infrastructure.
International Journal of Civil and Structural
Engineering Research, 12(2), 42–47.
Bal, A., Baur, J. W., Hartl, D. J., Frank, G. J., Gibson, T.,
Pan, H., & Huff, G. H. (2021). Multi-layer and
conformally integrated structurally embedded vascular
antenna (SEVA) arrays. Sensors, 21(5), 1764.
Chen, X., & Zheng, Z. (2023). A wideband bow-tie slot
antenna embedded in dielectric for 5G communication.
IEEE International Conference on Microwave and
Millimeter Wave Technology (ICMMT), 1–3.
Hassan, O. S., Saif ur Rahman, M., Mustapha, A. A., Gaya,
S., Abou-Khousa, M. A., & Cantwell, W. J. (2024).
Inspection of antennas embedded in smart composite
structures using microwave NDT methods and X-ray
computed tomography. Measurement: Journal of the
International Measurement Confederation, 226, Article
114086.
Hussain, R., Alhuwaimel, S. I., Algarni, A. M., Aljaloud,
K., & Hussain, N. (2022). A compact Sub-GHz wide
tunable antenna design for IoT applications.
Electronics, 11(7), 1074.
Inclán-Sánchez, L. (2023). 3D-printed transparent mesh
antenna for smart buildings. In Antenna designs for
5G/IoT and space applications (pp. 1308–1320). MDPI.
Jusoh, A. Z., Husain, N. F., Abdul Malek, N. F., Mohd Isa,
F. N., & Mohamad, S. Y. (2023). Design of
miniaturized antenna for IoT applications using
metamaterial. IIUM Engineering Journal, 24(1), 122–
137.
Khan, S., Mazhar, T., Shahzad, T., Bibi, A., Ahmad, W.,
Khan, M. A., Saeed, M. M., & Hamam, H. (2024).
Antenna systems for IoT applications: A review.
Discover Sustainability, 5, 412.
Kumar, N., Kumar, P., & Sharma, M. (2024).
Reconfigurable MIMO antenna for IoT wireless
applications controlled by embedded system. Journal of
Telecommunications and Information Technology,
96(2), 32–40.
Majumder, K., Pramanik, S., Goswami, J. (2025).
Implementation of Smart Building Using Internet of
Things (IoT). In: Acharyya, A., Dey, P., Biswas, S.
(eds) Real-World Applications and Implementations of
IoT. Studies in Smart Technologies. Springer,
Singapore.
Mishra, M., Lourenço, P. B., & Ramana, G. V. (2022).
Structural health monitoring of civil engineering
structures by using the internet of things: A review.
Automation in Construction, 132, 103936.
Rita, J., Salvado, J., Rocha, H. d., & Espírito-Santo, A.
(2025). A comprehensive review of IoT standards: The
role of IEEE 1451 in smart cities and smart buildings.
Smart Cities, 8(4), 108.
Shailesh, Srivastava, G., & Kumar, S. (2024). A flexible
reconfigurable MIMO antenna for IoT-enabled smart
systems. International Journal of Antennas and
Propagation, 2024, Article 7557178.
Spachos, P., Papapanagiotou, I., & Plataniotis, K. (2021).
Microlocation for smart buildings in the era of the
Internet of Things: A survey. arXiv preprint.
Tan, J., Shao, Y., Zhang, J., & Zhang, J. (2022). Empirical
formulas for performance prediction of concrete
embedded antenna. The University of Sheffield.
Vähä-Savo, L., Haneda, K., Icheln, C., & Lü, X. (2022).
Electromagnetic-thermal analyses of distributed
antennas embedded into a load bearing wall. arXiv
preprint.
Vähä-Savo, L., Veggi, L., Vitucci, E. M., Icheln, C., Degli-
Esposti, V., & Haneda, K. (2024). Analytical
characterization of a transmission loss of an antenna-
embedded wall. IEEE Open Journal of Antennas and
Propagation, 5(6), 1765–1772.