I. Pileckyte & S. Soto-Faraco. Sensory stimulation
enhances visual working memory capacity. Commun.
Psychol., 2(1), 109, (2024)
T. Guo, Y. Ren, Y. Yu, Y. Yu, Y. Hasegawa, Q. Wu, J.
Yang, S. Takahashi, Y. Ejima & J. Wu. Improving
visual working memory with training on a tactile
orientation sequence task in humans. Sage Open, 11(3),
21582440211031549, (2021)
C. Teng & D. J. Kravitz. Visual working memory directly
alters perception. Nat. Hum. Behav., 3(8), 827–836,
(2019)
I. E. Asp, V. S. Störmer & T. F. Brady. Greater visual
working memory capacity for visually matched stimuli
when they are perceived as meaningful. J. Cogn.
Neurosci., 33(5), 902–918, (2021)
J. Linde-Domingo & B. Spitzer. Geometry of visuospatial
working memory information in miniature gaze
patterns. Nat. Hum. Behav., 8(2), 336–348, (2023)
J. Mishra & A. Gazzaley. Attention distributed across
sensory modalities enhances perceptual performance. J.
Neurosci., 32(35), 12294–12302, (2012)
Q. Yu & W. M. Shim. Occipital, parietal, and frontal
cortices selectively maintain task-relevant features of
multi-feature objects in visual working memory.
NeuroImage, 157, 97–107, (2017)
S. J. Luck & M. A. Ford. On the role of selective attention
in visual perception. Proc. Natl. Acad. Sci., 95(3), 825–
830, (1998)
S. Qin & C. Basak. Age-related differences in brain
activation during working memory updating: An fMRI
study. Neuropsychologia, 138, 107335, (2020)
Y. Fan, D. K. Chong & Y. Li. Beyond play: A comparative
study of multi-sensory and traditional toys in child
education. Front. Educ., 9, 1182660, (2024)
B. Brucker, K. Scheiter & P. Gerjets. Learning with
dynamic and static visualizations: Realistic details only
benefit learners with high visuospatial abilities. Comput.
Hum. Behav., 36, 330–339, (2014)
E. Reuter, C. Voelcker‐Rehage, S. Vieluf & B. Godde.
Effects of age and expertise on tactile learning in
humans. Eur. J. Neurosci., 40(3), 2589–2599, (2014)
G. Wang, M. Zhao, F. Yang, L. J. Cheng & Y. Lau. Game-
based brain training for improving cognitive function in
community-dwelling older adults: A systematic review
and meta-regression. Arch. Gerontol. Geriatr., 92,
104260, (2021)
M. Kale, N. Wankhede, R. Pawar, S. Ballal, R. Kumawat,
M. Goswami, M. Khalid, B. Taksande, A. Upaganlawar,
M. Umekar, S. R. Kopalli & S. Koppula. AI-driven
innovations in Alzheimer’s disease: Integrating early
diagnosis, personalized treatment, and prognostic
modelling. Ageing Res. Rev., 101, 102497, (2024)
Harvard Health Publishing. How memory and thinking
ability change with age. (2017). Available online at:
https://www.health.harvard.edu/mind-and-mood/how-
memory-and-thinking-ability-change-with-age
T. Bi, X. Wang, H. Kou & J. Qiu. The effect of visual
working memory training could transfer across stimuli.
Psychol. Res. Behav. Manag., 13, 55–66, (2020)
S. Oliver, T. Kitago, A. Buchwald & S. F. Atashzar. EEG-
based analysis of brain responses in multi-modal
human-robot interaction: Modulating engagement
(Version 1). arXiv, (2024)
L. Brockhoff, L. Vetter, M. Bruchmann, S. Schindler, R.
Moeck & T. Straube. The effects of visual working
memory load on detection and neural processing of
task-unrelated auditory stimuli. Sci. Rep., 13(1), 4342,
(2023)
Y. He, Z. Guo, X. Wang, K. Sun, X. Lin, X. Wang, F. Li,
Y. Guo, T. Feng, J. Zhang, C. Li, W. Tian, X. Liu & S.
Wu. Effects of audiovisual interactions on working
memory task performance—Interference or facilitation.
Brain Sci., 12(7), 886, (2022)
M. Suda, T. Ikeda & M. Kikuchi. Visual working memory
resolution defined by figural complexity in
kindergarten children. J. Vis., 24(1), 4, (2024)
J. K. Degutis, S. Weber, J. Soch & J.-D. Haynes. Neural
dynamics of visual working memory representation
during sensory distraction. bioRxiv, (2024)