
tural applications. In International Conference on
Contemporary Computing and Applications (IC3A),
pages 28–33. IEEE.
Chathurya, C., Sachdeva, D., and Arora, M. (2023). Agri-
culture chatbot (agribot) using natural language pro-
cessing. In 2023 14th International Conference on
Computing Communication and Networking Tech-
nologies (ICCCNT), pages 1–5. IEEE.
Hasan, H., Musamih, A., Salah, K., Jayaraman, R., Omar,
M., Arshad, J., and Boscovic, D. (2024). Smart agri-
culture assurance: Iot and blockchain for trusted sus-
tainable produce. Computers and Electronics in Agri-
culture, 224:109184.
Hosseinalibeiki, H. and Zaree, M. (2023). A blockchain
based solution to improve loyalty program with nft
in agribusiness. Journal of Smart Environments and
Green Computing, 3(4):127–146.
Johnson, J., Douze, M., and J
´
egou, H. (2019). Billion-scale
similarity search with gpus. IEEE Transactions on Big
Data, 7(3):535–547.
Kamble, S., Gunasekaran, A., and Sharma, R. (2020). Mod-
eling the blockchain enabled traceability in agriculture
supply chain. International Journal of Information
Management, 52:101967.
Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin,
V., Goyal, N., K
¨
uttler, H., Lewis, M., Yih, W.,
Rockt
¨
aschel, T., et al. (2020). Retrieval-augmented
generation for knowledge-intensive nlp tasks. Ad-
vances in neural information processing systems,
33:9459–9474.
Li, X. and Wu, J. (2022). Public engagement in urban green
infrastructure planning: A critical review. Landscape
and Urban Planning, 225:104412.
Marla, A., Paul, R., Saha, A., Basha, N., and Anandhakr-
ishnan, B. (2023). An agrobot: Natural language pro-
cessing based chatbot for farmers. In 4th International
Conference on Smart Electronics and Communication
(ICOSEC), pages 1235–1241. IEEE.
Mostaco, G., Souza, I. D., Campos, L., and Cugnasca, C.
(2018). Agronomobot: a smart answering chatbot ap-
plied to agricultural sensor networks. In 14th interna-
tional conference on precision agriculture, volume 24,
pages 1–13.
Mullaney, J., Lucke, T., and Trueman, S. (2015). The ben-
efits of large species urban trees: A review of ecosys-
tem services. Urban Forestry & Urban Greening,
14(4):607–614.
Nabli, H., Djemaa, R. B., and Amor, I. B. (2024). Im-
proved clustering-based hybrid recommendation sys-
tem to offer personalized cloud services. Cluster Com-
puting, 27(3):2845–2874.
Nabli, H., Ghannem, A., Djemaa, R. B., and Sliman, L.
(2025). How innovative technologies shape the future
of pharmaceutical supply chains. Computers & Indus-
trial Engineering, 199:110745.
Nandhini, J., Anuratha, K., Sangeetha, K., and Jaswant,
K. (2021). Smart tree management with biodiversity
preservation using image processing and blockchain
technology. In 2021 International Conference on Sys-
tem, Computation, Automation and Networking (IC-
SCAN), pages 1–6. IEEE.
Niranjan, P., Rajpurohit, V., and Malgi, R. (2019). A survey
on chat-bot system for agriculture domain. In 2019 1st
International Conference on Advances in Information
Technology (ICAIT), pages 99–103. IEEE.
Ong, R., Raof, R., Sudin, S., and Choong, K. (2021). A re-
view of chatbot development for dynamic web-based
knowledge management system (kms) in small scale
agriculture. In Journal of Physics: Conference Series,
volume 1755, page 012051. IOP Publishing.
Pravinkrishnan, K., Balasundaram, P., and Kalinathan, L.
(2022). An overview of chatbots using ml algorithms
in agricultural domain. International Journal of Com-
puter Applications, 975(11):15–22.
Radhakrishnan, R., Tripathi, A., and Singh, V. (2022).
Chatbot-based citizen engagement in smart cities: A
framework for personalized urban services. Journal
of Urban Technology, 29(1):3–22.
Reimers, N. and Gurevych, I. (2019). Sentence-bert: Sen-
tence embeddings using siamese bert-networks. arXiv
preprint arXiv:1908.10084.
Santos, R. D., Pantoni, R., and Torrisi, N. (2023).
Blockchain tokens for agri-food supply chain. Journal
of Engineering Research and Sciences, 2(2):15–23.
Shuster, K., Poff, S., Chen, M., Kiela, D., and Weston, J.
(2021). Retrieval augmentation reduces hallucination
in conversation. arXiv preprint arXiv:2104.07567.
Slama, W. B., Charroux, B., Sliman, L., and Djemaa, R. B.
(2024). Towards blockchain like soa. In International
Conference on Web Information Systems Engineering,
pages 301–311. Springer.
Taherdoost, H. (2022). Non-fungible tokens (nft): A sys-
tematic review. Information, 14(1):26.
Tegeltija, S., Dejanovi
´
c, S., Feng, H., Stankovski, S., Os-
toji
´
c, G., Ku
ˇ
cevi
´
c, D., and Marjanovi
´
c, J. (2022).
Blockchain framework for certification of organic
agriculture production. Sustainability, 14(19):11823.
Torres, K. and McDonald, R. (2021). Urban trees and hu-
man health: A scoping review. International Jour-
nal of Environmental Research and Public Health,
18(9):4645.
Treiblmaier, H. (2018). The impact of blockchain on the
supply chain: A theory-based research framework and
a call for action. Supply Chain Management: An In-
ternational Journal, 23(6):545–559.
Usip, P., Udo, E., Asuquo, D., and James, O. (2022). A
machine learning-based mobile chatbot for crop farm-
ers. In International Conference on Electronic Gov-
ernance with Emerging Technologies, pages 192–211.
Springer.
Varveris, D., Styliadis, A., Xofis, P., and Dimen, L. (2023).
Distributed and collaborative tree architecture: A low-
cost experimental approach for smart forest monitor-
ing. Baltic Journal of Modern Computing, 11(4):653–
685.
Yoon, J. and Fischer, J. (2023). The importance of cultur-
ally significant trees in urban biodiversity strategies.
Urban Forestry & Urban Greening, 80:127828.
TISAS 2025 - Special Session on Trustworthy and Intelligent Smart Agriculture Systems: AI, Blockchain, and IoT Convergence
620