REFERENCES
ANSYS Inc. (2017). Appendix 4A: Hyperelasticity.
Connolly, F., Polygerinos, P., Walsh, C. J., & Bertoldi, K.
(2015). Mechanical programming of soft actuators by
varying fiber angle. Soft Robotics, 2(1), 26–32.
Dassault Systèmes. (2018). Modeling Rubber and
Viscoelasticity with Abaqus.
Elgström, E. (2014). Practical implementation of
hyperelastic material methods in FEA models.
Garcia, M., Esquen, A.-C., Sabbagh, M., Grace, D.,
Schneider, E., Ashuri, T., Voicu, R. C., Tekes, A., &
Amiri Moghadam, A. A. (2024). Soft Robots:
Computational Design, Fabrication, and Position
Control of a Novel 3-DOF Soft Robot. Machines, 12(8),
539.
Guo, M., & Hesthaven, J. S. (2018). Reduced order
modeling for nonlinear structural analysis using
Gaussian process regression. Computer Methods in
Applied Mechanics and Engineering, 341, 807–826.
https://doi.org/10.1016/J.CMA.2018.07.017
Han, Y., Duan, J., & Wang, S. (2020). Benchmark problems
of hyper-elasticity analysis in evaluation of FEM.
Materials, 13(4), 885.
Jin, J., Feng, S., & Li, S. (2024). Computational Design of
Customized Vacuum-Driven Soft Grippers. IEEE
Robotics and Automation Letters.
Lang, L., Antunes, R., Dutra, T. A., Aguiar, M. L. de,
Pereira, N., & Gaspar, P. D. (2025). Mechanical
Characterization and Computational Analysis of TPU
60A: Integrating Experimental Testing and Simulation
for Performance Optimization. Materials, 18(2).
https://doi.org/10.3390/ma18020240
Liu, S. Q., & Adelson, E. H. (2022). GelSight Fin Ray:
Incorporating Tactile Sensing into a Soft Compliant
Robotic Gripper. http://arxiv.org/abs/2204.07146
Liu, S. Q., Ma, Y., & Adelson, E. H. (2023). GelSight Baby
Fin Ray: A Compact, Compliant, Flexible Finger with
High-Resolution Tactile Sensing.
http://arxiv.org/abs/2303.14883
Maronehitz, P. (2024). Scripting for Mechanical Engineers.
Megan, L., & Croop, B. (2014). A Mechanism for the
Validation of Hyperelastic Materials in ANSYS.
Datapointlabs.
Navez, T., Ménager, E., Chaillou, P., Goury, O.,
Kruszewski, A., & Duriez, C. (2025). Modeling,
Embedded Control and Design of Soft Robots using a
Learned Condensed FEM Model. IEEE Transactions on
Robotics.
Nonaka, T., Abdulali, A., Sirithunge, C., Gilday, K., & Iida,
F. (2023). Soft robotic tactile perception of softer
objects based on learning of spatiotemporal pressure
patterns. 2023 IEEE International Conference on Soft
Robotics, RoboSoft 2023.
https://doi.org/10.1109/ROBOSOFT55895.2023.1012
1950
Ponce, H., Mart\’\inez-Villaseñor, L., & Mayorga-Acosta,
C. (2021). Design of a soft gripper using genetic
algorithms. Computación y Sistemas, 25(4), 835–842.
Shin, J. H., Park, J. G., Kim, D. Il, & Yoon, H. S. (2021). A
Universal Soft Gripper with the Optimized Fin Ray
Finger. International Journal of Precision Engineering
and Manufacturing - Green Technology, 8(3), 889–899.
https://doi.org/10.1007/s40684-021-00348-1
Stella, F., & Hughes, J. (2023). The science of soft robot
design: A review of motivations, methods and enabling
technologies. Frontiers in Robotics and AI, 9, 1059026.
Suder, J., Bobovský, Z., Mlotek, J., Vocetka, M., Oščádal,
P., & Zeman, Z. (2021). Structural optimization method
of a finray finger for the best wrapping of object.
Applied Sciences (Switzerland), 11(9).
https://doi.org/10.3390/app11093858
Xie, Y., Pinskier, J., Liow, L., Howard, D., & Iida, F.
(2024). A’MAP’to find high-performing soft robot
designs: Traversing complex design spaces using
MAP-elites and Topology Optimization. 2024
IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 11408–11415.
Xie, Y., Wang, X., Iida, F., & Howard, D. (2024). Fin-QD:
A Computational Design Framework for Soft Grippers:
Integrating MAP-Elites and High-fidelity FEM. 2024
IEEE 7th International Conference on Soft Robotics,
RoboSoft 2024, 692–697.
https://doi.org/10.1109/ROBOSOFT60065.2024.1052
1959.
Yi, S., Bai, X., Singh, A., Ye, J., Tolley, M. T., & Wang, X.
(2025). Co-Design of Soft Gripper with Neural Physics.
ArXiv Preprint ArXiv:2505.20404.
Zhang, C., Zhu, P., Lin, Y., Jiao, Z., & Zou, J. (2020).
Modular soft robotics: Modular units, connection
mechanisms, and applications. Advanced Intelligent
Systems, 2(6), 1900166.