REFERENCES
Santoso, N. A., Lutfayza, R., Nughroho, B. I., & Gunawan,
G. (2024). Anomaly detection in network security sys-
tems using machine learning. Journal of Intelligent De-
cision Support System, 7(2), 113–120.
Immadi, A. (2025). Machine learning for real-time anomaly
detection. ResearchGate. https://www.re-
searchgate.net/publica-
tion/387754595_Machine_Learning_for_Real-
Time_Anomaly_Detection
Schummer, P., del Rio, A., Serrano, J., Jimenez, D.,
Sánchez, G., & Llorente, Á. (2024). Machine learning-
based network anomaly detection: Design, implemen-
tation, and evaluation. AI, 5(4), 2967–2983.
https://doi.org/10.3390/ai5040143
Liu, S., Zhao, Z., He, W., Wang, J., Peng, J., & Ma, H.
(2025). Privacy-preserving hybrid ensemble model for
network anomaly detection: Balancing security and
data protection. arXiv preprint arXiv:2502.09001.
Bierbrauer, D. A., Chang, A., Kritzer, W., & Bastian, N. D.
(2021). Cybersecurity anomaly detection in adversarial
environments. arXiv preprint arXiv:2105.06742.
Rose, J., Swann, M., Bendiab, G., Shiaeles, S., & Koloko-
tronis, N. (2021). Intrusion detection using network
traffic profiling and machine learning for IoT. arXiv
preprint arXiv:2109.02544.
Lunardi, W. T., Lopez, M. A., & Giacalone, J.-P. (2022).
ARCADE: Adversarially regularized convolutional au-
toencoder for network anomaly detection. arXiv pre-
print arXiv:2205.01432.
Agyemang, E. F. (2024). Anomaly detection using unsuper-
vised machine learning algorithms: A simulation study.
Scientific African, 24, e02386.
Patil, R. M., Patil, R. V., Pagare, U. B., Navandar, R. K.,
Mapari, R., Bhowmik, M., & Deore, S. S. (2024).
Anomaly detection in network security: Deep learning
for early identification. International Journal of Intelli-
gent Systems and Applications in Engineering, 12(19s),
133–144.
Sharma, A. (2025). Real-time anomaly detection in net-
works using machine learning. Motadata.
https://www.motadata.com/blog/real-time-anomaly-
detection-in-networks-using-machine-learning/
Infraon. (2023). AI-driven networks anomaly detection:
Best guide 2025. Infraon. https://infraon.io/blog/a-
guide-on-ai-driven-networks-anomaly-detection/
Fidelis Security. (2025). Guide to real-time anomaly detec-
tion in security systems. Fidelis Security. https://fidelis-
security.com/threatgeek/threat-detection-re-
sponse/real-time-anomaly-detection-zero-day-attacks/
Tinybird. (2024). Real-time anomaly detection: Use cases
and code examples. Tinybird. https://www.ti-
nybird.co/blog-posts/real-time-anomaly-detection
International Journal of Future Management Research.
(2025). Anomaly detection for network traffic using
machine learning. IJFMR
, 1(1), 37761.
https://www.ijfmr.com/papers/2025/1/37761.pdf
Nature. (2025). Efficient anomaly detection in tabular cy-
bersecurity data using large language models. Scientific
Reports, 15, 88050. https://www.na-
ture.com/articles/s41598-025-88050-z
Frontiers in Physics. (2025). Security anomaly detection for
enterprise management network based on deep learn-
ing. Frontiers in Physics, 13, 1538605.
https://www.frontiersin.org/jour-
nals/physics/articles/10.3389/fphy.2025.1538605/epub
ScienceDirect. (2024). Network anomaly detection and se-
curity defense technology based on machine learning.
Computers & Electrical Engineering, 112, 108508.
https://www.sciencedirect.com/science/article/abs/pii/
S0045790624005081
ResearchGate. (2025). How can machine learning enhance
anomaly detection in network traffic to prevent zero-
day attacks? ResearchGate. https://www.re-
searchgate.net/post/How_can_machine_learning_en-
hance_anomaly_detection_in_network_traffic_to_prev
ent_zero-day_attacks
ScienceDirect. (2024). Anomaly detection using unsuper-
vised machine learning algorithms: A simulation study.
Scientific African, 24, e02386. https://www.sciencedi-
rect.com/science/article/pii/S2468227624003284
MDPI. (2024). Machine learning-based network anomaly
detection: Design, implementation, and evaluation. AI,
5(4), 2967–2983. https://www.mdpi.com/2673-
2688/5/4/143