REFERENCES
Alzubi, J. A., Alshawabkeh, M., & Ayyash, M. M. (2022).
Load balancing approach based on genetic algorithm
for efficient resource allocation in cloud. Indonesian
Journal of Electrical Engineering and Computer Scien
ce, 28(3), 1201– 1208. https://doi.org/10.11591/ijeecs.
v28.i3.pp1201-1208
Arroba, P., Risco-Martín, J. L., Moya, J. M., & Ayala, J. L.
(2023). Heuristics and metaheuristics for dynamic
management of computing and cooling energy in cloud
data centers. arXiv preprint arXiv:2312.10663.
Devarasetty, P., & Reddy, S. (2021). Genetic algorithm for
quality of service-based resource allocation in cloud
computing. Evolutionary Intelligence, 14, 381–387.
https://doi.org/10.1007/s12065-020-00418-2
Ding, Z., Tian, Y. C., Wang, Y. G., Zhang, W. Z., & Yu, Z.
G. (2023). Accelerated computation of the genetic
algorithm for energy-efficient virtual machine
placement in data centers. Neural Computing and
Applications, 35(7), 5421– 5436. https://doi.org/10.10
07/s00521-022-07941-8
Gupta, H., Dutta, D., & Saxena, D. (2021). Energy-aware
scheduling in cloud data centers using multi-objective
genetic algorithm. Procedia Computer Science, 184,
489–496. https://doi.org/10.1016/j.procs.2021.03.062
Hamed, A. Y., & Alkinani, M. H. (2021). Task scheduling
optimization in cloud computing based on genetic
algorithms. Computational Materials & Continua,
69(3), 3289– 3301. https://doi.org/10.32604/cmc.2021
.015728
Kar, I., Parida, R. N., & Das, H. (2016). Energy-aware
scheduling using genetic algorithm in cloud data
centers. In 2016 International Conference on Electrical,
Electronics, and Optimization Techniques
(ICEEOT) (pp. 1– 6). IEEE. https://doi.org/10.1109/
ICEEOT.2016.7754874
Khalili, S., Khosravi, M. R., & Shanmugam, B. (2023).
Dynamic virtual machine consolidation using GA-PSO
hybrid approach for cloud data centers. Journal of
Supercomputing, 79, 14598– 14619. https://doi.org/10
.1007/s11227-023-04903-0
Lin, Z., & Pan, Y. (2021). A deep learning-assisted genetic
algorithm for energy-efficient cloud resource
scheduling. Future Generation Computer Systems, 120,
17–28. https://doi.org/10.1016/j.future.2021.02.025
Liu, S., & Wang, N. (2020). Collaborative optimization
scheduling of cloud service resources based on
improved genetic algorithm. IEEE Access, 8, 150878–
150890.https://doi.org/10.1109/ACCESS.2020.301692
4
Manasrah, A. M., Baza, M., & Qawasmeh, O. (2023).
Multi-objective genetic algorithm-based VM
placement for energy-aware cloud data centers. Journal
of Cloud Computing: Advances, Systems and
Applications, 12(1), 55. https://doi.org/10.1186/s1367
7-023-00433-7
Mao, L., Chen, R., Cheng, H., Lin, W., Liu, B., & Wang, J.
Z. (2023). A resource scheduling method for cloud data
centers based on thermal management. Journal
of Cloud Computing, 12(1), 84. https://doi.org/10.118
6/s13677-023-00462-2
Materwala, H., & Ismail, L. (2021). Performance and
energy-aware bi-objective tasks scheduling for cloud
data centers. arXiv preprint arXiv:2105.00843.
Mehmood, I., & Ahmad, I. (2022). Energy-efficient task
consolidation using improved genetic algorithm in
cloud data centers. Computers & Electrical
Engineering, 98, 107693. https://doi.org/10.1016/j.co
mpeleceng.2022.107693
Nayak, P. C., Mishra, S., Prusty, R. C., & Panda, S. (2023).
Hybrid whale optimization algorithm with simulated
annealing for load frequency controller design of hybrid
power system. Soft Computing, 1–24.
https://doi.org/10.1007/s00500-023-08154-1
Pawar, S. S., & Sangle, R. (2021). Optimizing energy-
aware scheduling using hybrid genetic algorithms in
cloud infrastructure. International Journal of Grid and
Distributed Computing, 14(1), 29– 42. http://dx.doi.or
g/10.31257/ijgdc.2021.14.1.29
Sadeghi, A., Bahmani, F., & Kamalabadi, I. N. (2021). A
hybrid algorithm for minimizing energy consumption
in cloud computing environments. International Journal
of Intelligent Engineering and Systems, 14(5), 405–
415. https://doi.org/10.22266/ijies2021.1031.36
Saxena, D., Gupta, I., Kumar, J., Singh, A. K., & Wen, X.
(2021). A secure and multi-objective virtual machine
placement framework for cloud data centre. arXiv
preprint arXiv:2107.13502.
Shi, F. (2024). A genetic algorithm-based virtual machine
scheduling algorithm for energy-efficient resource
management in cloud computing. Concurrency and
Computation: Practice and Experience, 36(22), e8207.
Singh, H., Sharma, S., & Bansal, A. (2022). A hybrid
metaheuristic approach for virtual machine placement
to reduce energy consumption. Journal of Intelligent &
Fuzzy Systems, 43(1), 453– 465. https://doi.org/10.32
33/JIFS-219337
Sirisumrannukul, S., Intaraumnauy, T., & Piamvilai, N.
(2024). Optimal control of cooling management system
for energy conservation in smart home with ANNs-PSO
data analytics microservice platform. Heliyon, 10(6),
e12345. https://doi.org/10.1016/j.heliyon.2024.e12345
Tran, H. T., Nguyen, D. Q., & Huynh, T. N. (2021). A novel
energy-aware VM placement approach using multi-
objective genetic algorithm in cloud computing.
Engineering Science and Technology, an International
Journal, 24(5), 1137– 1147. https://doi.org/10.1016/j.j
estch.2021.03.002
Yu, H. (2021). Evaluation of cloud computing resource
scheduling based on improved optimization algorithm.
Complex & Intelligent Systems, 7(4), 1817–1822.
https://doi.org/10.1007/s40747-021-00521-9
Zhang, H. (2023). A cloud computing task scheduling
method based on genetic algorithm. In Proceedings of
the 2023 International Conference on Intelligent Data
Communication (pp. 1– 6). https://doi.org/10.4108/ea
i.2-6-2023.2334608
Zolfaghari, A., Dastghaibyfard, G., & Sohrabi, M. K.
(2022). Energy-efficient virtual machine placement in