Table 1: Accuracy and Rate.
YOLO
VERSIONS
MAP Precision Recal F1-Score
YOLOV5 0.91 0.85 0.78 0.82
YOLOV7 0.94 0.87 0.80 0.85
YOLOV8 0.97 0.90 0.82 0.85
YOLOV11 1.0 0.91 0.93 0.95
REFERENCES
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual
learning for image recognition. IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).
Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D.,
Wang, W., Weyand, T., ... & Adam, H. (2017).
MobileNets: Efficient convolutional neural networks
for mobile vision applications. arXiv preprint
arXiv:1704.04861.
Ijiga, A. C., Igbede, M. A., Ukaegbu, C., Olatunde, T. I.,
Olajide, F. I. & Enyejo, L. A. (2024). Precision
healthcare analytics: Integrating ML for automated
image interpretation, disease detection, and prognosis
prediction. World Journal of Biology Pharmacy and
HealthSciences,2024https://wjbphs.com/sites/default/f
iles/WJBPHS-2024-0214.pdf
Ijiga, A. C., Abutu, E. P., Idoko, P. I., Agbo, D. O., Harry,
K. D., Ezebuka, C. I., & Umama, E. E. (2024). Ethical
considerations in implementing generative AI for
healthcare supply chain optimization: A cross-country
analysis across India, the United Kingdom, and the
United States of America. International Journal of
Biological and Pharmaceutical Sciences Archive, 2024,
07(01), 048063.https://ijbpsa.com/sites/default/files/IJ
BPSA-2024
Ijiga, A. C., Aboi, E. J., Idoko, P. I., Enyejo, L. A., &
Odeyemi, M. O. (2024). Collaborative innovations in
Artificial Intelligence (AI): Partnering with leading
U.S. tech firms to combat human trafficking. Global
Journal of Engineering and Technology Advances,
2024,18(03),106123.https://gjeta.com/sites/default/file
s/GJETA2024
Kang, K., Ouyang, W., Li, H., & Wang, X. (2018). Crowd
counting with deep structured scale integration
networks. IEEE Transactions on Pattern Analysis and
Machine Intelligence (TPAMI).
Lee, J., & Kim, S. (2023). A deep learning approach for IoT
security: An application of CNN and LSTM. Journal of
Information Security and Applications, 72, 103-112.
Levi, G., & Hassner, T. (2015). Age and gender
classification using convolutional neural networks.
IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW).
Li, Y. & Zhao, Y. 2020, 'Application of CNN in IoT
Anomaly Detection', Journal of Network and Computer
Applications, vol. 148, p. 102435
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.,
Fu, C. Y., & Berg, A. C. (2016). SSD: Single shot
multibox detector. European Conference on Computer
Vision (ECCV).
Parki, O. M., Vedaldi, A., & Zisserman, A. (2015). Deep
face. British Machine Vision Conference (BMVC).
Redmon, J., & Farhadi, A. (2018). YOLOv3: An
incremental improvement. arXiv preprintrXiv:1804.02
767.
Ribeiro, M., Ghosh, S., & dos Santos, E. (2019). Anomaly
detection in crowded scenes using deep learning. IEEE
Transactions on Circuits and Systems for Video
Technology (TCSVT).
Rodriguez, M., Laptev, I., Sivic, J., & Audibert, J. Y.
(2011). Density-aware person detection and tracking in
crowds. IEEE International Conference on Computer
Vision (ICCV).
Taigman, Y., Yang, M., Ranzato, M. A., & Wolf, L. (2014).
DeepFace: Closing the gap to human-level performance
in face verification. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).
Tuk, M., & Pentland, A. (1991). Eigenfaces for recognition.
Journal of Cognitive Neuroscience.
Xie, W., Noble, J. A., & Zisserman, A. (2018). Microscopy
cell counting with deep learning: CNNs versus
transformer-based architectures. International Journal
of Computer Vision.
Zhang, C., Li, H., Wang, X., & Yang, X. (2015). Cross-
scene crowd counting via deep convolutional neural
networks. IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).