coastal aquifer using supervised machine learning
techniques Water. Pract. Technol. 18 501–21.
Alrowais, R. et al. Groundwater Quality assessment for
drinking and irrigation purposes at Al-Jouf area in KSA
using artifcial neural network, GIS, and multivariate
statistical techniques. Water 15, 2982 (2023).
Aslam R A, Shrestha S and Pandey V P 2018 Groundwater
vulnerability to climate change: a review of the
assessment methodology Sci. Total Environ. 612 853–
75.
Chadalavada S, Datta B, Naidu R (2011) Optimisation
approach for pollution source identification in
groundwater: an overview. Int J Environ Waste Manag
8(1–2):40–61.
Ebenstein, A. The consequences of industrialization:
Evidence from water pollution and digestive cancers in
China. Rev. Econ. Stat. 2012, 94, 186–201.
Egbueri, J.C. Groundwater quality assessment using
pollution index of groundwater (PIG), ecological risk
index (ERI) and hierarchical cluster analysis (HCA): A
case study. Groundw. Sustain. Dev. 2020, 10, 100292.
El Bilali, A. & Taleb, A. Prediction of irrigation water
quality parameters using machine learning models in a
semi-arid environment. J. Saudi Soc. Agric. Sci. 19,
439–451 (2020).
Ghobadi Fatemeh K D 2023 Application of machine
learning in water resource management: a systematic
literature review Water 15 620.
Gorelick SM, Evans BE, Remson I (1983) Identifying
sources of groundwater pollution: an optimization
approach. Water Resour Res 19(3):779–790.
Jibrin A M, Al- Suwaiyan M, Aldrees A, Dan’azumi S,
Usman J, Abba S I, Yassin M A, Scholz M and Sammen
S S 2024 Machine learning predictive insight of water
pollution and groundwater quality in the Eastern
Province of Saudi Arabia Sci. Rep. 14 1–16.
Linard Atos, P.; Papastefanopoulos, V.; Kostiantyn, S.
Explainable AI: A Review of Machine Learning
Interpretability Methods. Entropy 2021, 23, 18.
https://dx.doi.org/ 10.3390/e23010018.
Moriasi, D. N., Gitau, M. W., Pai, N. & Daggupati, P.
Hydrologic and water quality models: Performance
measures and evaluation criteria. Trans. ASABE 58,
1763–1785 (2015).
Mustaq Shaikh, Farjana Birajdar (2024). Ensuring Purity
and Health: A Comprehensive Study of Water Quality
Testing Labs in Solapur District for Community Well-
being, International Journal of Innovative Science and
Research Technology, Volume 9, Issue 1, January-
2024.
Reed P, Minsker B, Valocchi AJ (2000) Cost-effective
long-term groundwater monitoring design using a
genetic algorithm and global mass interpolation. Water
Resour Res 36(12):3731– 3741.
Sajib, A. M. et al. Developing a novel tool for assessing the
groundwater incorporating water quality index and
machine learning approach. Groundw. Sustain. Dev.
23, 101049 (2023).
Shiri N, Shiri J, Yaseen Z M, Kim S, Chung I M, Nourani
V and Zounemat-Kermani M 2021 Development of
artificial intelligence models for well groundwater
quality simulation: different modeling scenarios PLoS
One 16 e0251510.
Smit, R.; van de Loo, J.; van den Boomen, M.; Khakzad,
N.; van Heck, G.J.; Wolfert, A.R.M.R. Long-term
availability modeling of water treatment plants. J.
Water Process Eng. 2019, 28, 203–213.
Solangi G S, Ali Z, Bilal M, Junaid M, Panhwar S, Keerio
H A, Sohu I H, Shahani S G and Zaman N 2024
Machine learning, Water Quality Index, and GIS-based
analysis of groundwater quality Water. Pract. Technol.
Zares fat, M.; Derakhshani, R. Revolutionizing
Groundwater Management with Hybrid AI Models: A
Practical Review. Water 2023, 15, 1750.
https://doi.org/10.3390/ w15091750.