REFERENCES
A Real-time Driving Drowsiness Detection Algorithm with
Indiv Differences Consideration, " by F. You, X.
Li, Y. Gong, H. Wang, and H in IEEE Access, vol. 7,
pp. 179396-179408, 2019,
10.1109/ACCESS.2019.2958667.
Determining Driver Drowsiness Using Condition-Ada
Representation Learning Framework, " by J. Yu,
S. Park, S. Lee, a Jeon, in IEEE Transactions on
Intelligent Transportation Systems, vol. 20, n pp. 4206-
4218, Nov. 2019, doi:10.1109/TITS.2018.2883823.
In IEEE Sensors Journal, vol. 20, no. 7, pp. 3709-3717, 1
April 1, 2 M. Sunagawa, S. Shikii, W.Nakai, M.
Mochizuki, K. Kusukame, an Kitajima published
" Comprehensive Drowsiness Level Detection M
Combining Multimodal Information," doi:
10.1109/JSEN.2019.29601
A Survey on State-of-the-Art Drowsiness Detection
Techniques, & quo M.Ramzan, H. U. Khan,S. M.
Awan, A. Ismail, M. Ilyas, and A. Mahmo IEEE
Access, vol. 7, pp. 61904-61919,
doi:10.1109/ACCESS.2019.2914373.
An Effective Hybrid Model for EEG-Based Drowsiness
Detection by U. B V. Bajaj, Y. Akbulut, O. Atila, and
A. Sengur, appeared in IEEE Sensors Jou vol. 19, no.
17, pp. 7624- 7631, September 1, 2 doi:10.1109/JSEN.
2019.2917850.
In IEEE Transactions on Biomedical Engineering,vol. 66,
no. 6, pp. 1769–1778, June 2019, K.Fujiwara et al.
published “Heart Rate Variability- Based Driver Dro
wsiness Detection and ItsValidation with EEG”
doi:10.1109/TBME.2018.2879346.
Machine learning aided design and optimization of MEMS
optical phased array with silicon micro mirrors for
nanofabrication S.Premalatha, Himanshu sharma,
Vipul Vekariya, Abhinav Shrivastra, G Ramkumar,
Ahmed Sayed M
In IEEE Tnsactions on Human-Machine Systems, vol. 48,
no. 1, pp. 50-62, February 2018, G.Li and W. Chung
published “Combined EEG-Gyroscope-tDCS Brain
Machine Interface System for Early Management of
Driver Drowsiness," doi:10.1109/THMS.2017.275980
8.
In IEEE Transactions on Neural Systems and Rehabilitation
Engineering, vol. 26, no. 2, pp. 400-406, February
2018, C. Wei, Y. Wang, C. Lin, and T.Jung, "
Towards Drowsiness Detection Using Non-
hair- Bearing EEG- Based Brain- Computer Interfaces
," doi: 10.1109/TNSRE.2018.2790359.
Takayuki Katsuki, Kun Zhao, Takayuki Yoshizumi,
"Learning to Estimate Driver Drowsiness from Car
Acceleration Sensors Using Weakly Labeled Data",
ICASSP 2020 - 2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP),
pp.3002-3006, 2020.
Rekyan Regasari Mardi Putri, Chin-Chun Chang, Aditya
Fitri Hananta Putra, Setyan Pamungkas, Deron Liang,
"SmartDetect: Safe Driving by Detecting Steering-
Wheel Handling with a Single Smartwatch", IEEE
Sensors Journal, vol.24, no.10, pp.16325-16335, 2024.
Fan, S. Huang, S. Lin, D. Xu, Y. Peng, and S. Yi, ‘‘Types,
risk factors, consequences, and detection methods of
train driver fatigue and distraction,’’ Comput. Intell.
Neurosci., vol. 2022, pp. 1–10, Mar. 2022.
M. Mohana Soundarya, S. Jay Chitra, “An Efficient Code
Compression Technique for Ecg Signal Application
Using Xilinx Software”, International Journal of
Scientific & Technology Research Volume 8, Issue 09,
September 2019 ISSN 2277-8616.
S. Jayachitra, C.Nelson Kennedy Babu “Energy – efficient
Polynomial Time Resource Channelized Framework
for Data Communication in MANET” Asian Journal of
Information Technology, Medwell Journals, vol. 15, no.
12, pp. 1987-1995.2016 ISSN 1682-3915