OptiML Suite an even more powerful and flexible
tool for automated machine learning in the future.
REFERENCES
A.-M. Bucur, A. Cosma, L.P. Dinu, Sequence-to-sequence
lexical normalization with multilingual transformers.
arXiv preprint arXiv:2110.02869, (2021).
A.M. Vincent, P. Jidesh, An improved hyperparameter
optimization framework for AutoML systems using
evolutionary algorithms. Scientific Reports, 13(1),
(2023) 4737.
D. Singh, B. Singh, Feature- wise normalization: An effect
ive way of normalizing data. Pattern Recognition, 122,
(2022) 108307.
D.T. Tran, J. Kanniainen, M. Gabbouj, A. Iosifidis, Biline
ar input normalization for neural networks in financial
forecasting. arXiv e- prints, pages arXiv– 2109, (2021)
.
E. LeDell, S. Poirier, H2O AutoML: Scalable automatic
machine learning. In Proceedings of the AutoML Wor
kshop at ICML, (2020).
H.C. Vazquez, A general recipe for automated machine
learning in practice. arXiv e-prints, pages arXiv–2308,
(2023).
J.H. Moore, P.H. Ribeiro, N. Matsumoto, A.K. Saini,
Genetic programming as an innovation engine for
automated machine learning: The tree-based pipeline
optimization tool (TPOT). In Handbook of Evolutiona
ry Machine Learning, (2023) 439–455.
L. Cao, AutoAI: Autonomous AI. IEEE Intelligent
Systems, 37(5), (2022) 3–5.
L. Huang, J. Qin, Y. Zhou, F. Zhu, L. Liu, L. Shao,
Normalization techniques in training DNNs: Methodol
ogy, analysis and application. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 45(8), (202
3) 10173–10196.
L. Liu, S. Hasegawa, S.K. Sampat, M. Xenochristou, W.-
P. Chen, T. Kato, T. Kakibuchi, T. Asai, AutoDW: Au
tomatic data wrangling leveraging large language mod
els. In Proceedings of the 39th IEEE/ACM Internation
al Conference on Automated Software Engineering,
(2024) 2041–2052.
L. Vaccaro, G. Sansonetti, A. Micarelli, An empirical revi
ew of automated machine learning. Computers, 10(1),
(2021) 11.
M. Baratchi, C. Wang, S. Limmer, J.N. van Rijn, H. Hoos,
T. Bäck, M. Olhofer, Automated machine learning:
past, present and future. Artificial Intelligence Review,
57(5), (2024) 1–88.
Md M. Ahsan, M.A.P. Mahmud, P.K. Saha, K.D. Gupta, Z.
Siddique, Effect of data scaling methods on machine
learning algorithms and model performance.
Technologies, 9(3), (2021) 52.
P. Gandhi, J. Pruthi, Data visualization techniques:
traditional data to big data. Data Visualization: Trends
and Challenges Toward Multidisciplinary Perception,
(2020) 53–74.
P. Das, N. Ivkin, T. Bansal, L. Rouesnel, P. Gautier, Z.
Karnin, L. Dirac, L. Ramakrishnan, A. Perunicic, I.
Shcherbatyi, et al., Amazon SageMaker Autopilot: A
white box AutoML solution at scale. In Proceedings of
the Fourth International Workshop on Data Manageme
nt for End-to-End Machine Learning, (2020) 1–7.
P. Li, X. Rao, J. Blase, Y. Zhang, X. Chu, C. Zhang,
CleanML: A study for evaluating the impact of data
cleaning on ML classification tasks. In 2021 IEEE 37th
International Conference on Data Engineering (ICDE),
(2021) 13–24.
P. Gijsbers, M.L.P. Bueno, S. Coors, E. LeDell, S. Poirier,
J. Thomas, B. Bischl, J. Vanschoren, AMLB: An
AutoML benchmark. Journal of Machine Learning
Research, 25(101), (2024) 1–65.
R. Lopez, R. Lourenço, R. Rampin, S. Castelo, A.S.R.
Santos, J.H.P. Ono, C. Silva, J. Freire, AlphaD3M: An
open-source AutoML library for multiple ML tasks. In
International Conference on Automated Machine
Learning, (2023) 22–1.
R.S. Olson, J.H. Moore, TPOT: A tree-based pipeline
optimization tool for automating machine learning. In
Workshop on Automatic Machine Learning, (2016) 66–
74.
T. Thomas, E. Rajabi, A systematic review of machine
learning-based missing value imputation techniques.
Data Technologies and Applications, 55(4), (2021)
558–585.
Tschalzev, S. Marton, S. Lüdtke, C. Bartelt, H.
Stuckenschmidt, A data- centric perspective on evaluat
ing machine learning models for tabular data. arXiv
preprint arXiv:2407.02112, (2024).
Y. Zhao, R. Zhang, X. Li, AutoDES: AutoML pipeline
generation of classification with dynamic ensemble
strategy selection. arXiv preprint arXiv:2201.00207,
(2022).
Y.-D. Tsai, Y.-C. Tsai, B.-W. Huang, C.-P. Yang, S.-D.
Lin, AutoML- GPT: Large language model for AutoM
L. arXiv preprint arXiv:2309.01125, (2023).