
Generation. Journal of Information Security and
Applications, 52, 102484.
Abdelnabi, S., & Fritz, M. (2009). Adversarial
Watermarking Transformer: Towards Tracing Text
Provenance with Data Hiding. CISPA Helmholtz
Center for Information Security.
Brown, T., Mann, B., & Ryder, N. (2020). Language
Models are Few-Shot Learners. arXiv preprint
arXiv:2005.14165.
Chen, X., Yu, Z., Wang, J., & Zhang, X. (2023). Generative
Text Steganography with Large Language Model.
arXiv.
Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q., &
Salakhutdinov, R. (2019). Transformer-XL: Attentive
language models beyond a fixed-length context. In
Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics (pp. 2978–
2988). Association for Computational Linguistics.
Feng, C., Xu, Y., & Chen, W. (2020). Optimizing Text
Steganography for High Capacity and Low
Detectability. Applied Intelligence, 50(2), 507–518.
Gu, J., Liu, Q., & Cho, K. (2018). DialogWAE: Learning
Turn-Level Variational Latent Actions for
Conversations. In Proceedings of the 57th Annual
Meeting of the Association for Computational
Linguistics (pp. 1233–1242). Association for
Computational Linguistics.
Jinyang Ding, Kejiang Chen, Yaofei Wang, Na Zhao,
Weiming Zhang, and Nenghai Yu. 2023.Discop:
Provably Secure Steganography in Practice Based on
“Distribution Copies”. In 2023 IEEE Symposium on
Security and Privacy (SP). IEEE Computer Society,
2238–2255.
Kang, H. X., Wu, H. Z., & Zhang, X. P. (2020). Generative
Text Steganography Based on LSTM Network and
Attention Mechanism with Keywords
Li, L. J., Huang, L. S., & Zhao, X. X. (2008). A Statistical
Attack on a Kind of Word-Shift Text Steganography
Liu, S., Zhang, S., & Chen, Y. (2021). Hierarchical Text
Embedding for Robust Steganography in the Latent
Space. IEEE Access, 9, 1784–1796.
Luo, X., & Chen, X. (2019). Latent Space Manipulation for
Enhanced Text Steganography Using Variational
Autoencoders. Pattern Recognition Letters, 128, 311–
319.
Moraldo, H. H. (2014). An Approach for Text
Steganography Based on Markov Chains
Shen, S., Tan, H., Zhang, Y., Feng, J., & Zhou, M. (2017).
Style Transfer from Non-Parallel Text by Cross-
Alignment. In Advances in Neural Information
Processing Systems (Vol. 30, pp. 6830–6841). Curran
Associates, Inc.
Siyu Zhang, Zhongliang Yang, Jinshuai Yang, and
Yongfeng Huang. 2021.Provably Secure Generative
Linguistic Steganography. In Findings of the
Association for Computational Linguistics: ACL-
IJCNLP 2021. 3046–3055.
Ueoka, H., Murawaki, Y., & Kurohashi, S. (2021).
Frustratingly easy edit-based linguistic steganography
with a masked language model. arXiv:2104.09833v1.
Wu, H., Kang, H., & Yang, H. (2021). Neural Text
Steganography Based on Adversarial Training. IEEE
Transactions on Neural Networks and Learning
Systems, 32(1), 127–138.
Yang, Z., Wang, K., Li, J., & Huang, Y. (2019). TS-RNN:
Text Steganalysis Based on Recurrent Neural
Networks. IEEE Signal Processing Letters, 26(4), 627-
631.
Yang, Z., Xiang, L., Zhang, S., Sun, X., & Huang, Y.
(2021). Linguistic generative steganography with
enhanced cognitive-imperceptibility. IEEE Signal
Processing Letters, 28(4), 409-413.
Zachary Ziegler, Yuntian Deng, and Alexander M Rush.
2019.Neural Linguistic Steganography. Proceedings of
the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-
IJCNLP). 1210–1215.
Zhang, Z., Zhao, Y., & Liu, Y. (2022). An Efficient RNN-
Based Steganalysis Model for Detecting Text
Steganography. Journal of Information Security and
Applications, 63, 103111.
Ziegler, Z. M., Deng, Y., & Rush, A. M. (2019). Neural
Linguistic Steganography
Advanced Text Steganography Using Variational Autoencoders and Greedy Sampling
817