5 RESULTS
Cancer Care Nexus is an artificial intelligence-based
cancer detection platform that is able to detect various
types of can- cers through machine learning
algorithms. The Breast Cancer Module uses a
Random Forest Classifier for text analysis, with an
accuracy of 93%, and the Lung Cancer Module uses
the same algorithm for detecting lung cancer with
an accuracy of 95%. For picture-based detection, the
Skin Cancer Module uses a Convolutional Neural
Network (CNN) to achieve 92% accuracy, while the
Blood Cancer Module is also based on CNN and
gives an 85% accuracy. Through these domain-
specific models being integrated together, Cancer
Care Nexus guarantees an end-to-end effective
diagnostic process and early cancer detection, while
helping healthcare experts to make proper clinical
decisions.
REFERENCES
A. I. Shehta, M. Nasr, and A. E. D. M. El Ghazali,” Blood
cancer prediction model based on deep learning
technique,” Sci. Rep., vol. 15, no. 1, p. 1889, 2025.
A. Jafari, “Machine-learning methods in detecting breast
cancer and related therapeutic issues: a review,”
Computer Methods in Biomechanics and Biomedical
Engineering: Imaging & Visualization, vol. 12, no. 1, p.
2299093, 2024.
B. S, P. R, and A. B,” Lung Cancer Detection using
Machine Learning,” in Proc. Int. Conf. Appl. Artif.
Intell. Comput. (ICAAIC), Salem, India, 2022, pp. 539-
543, doi: 10.1109/ICAAIC53929.2022.9793061.
B. N. Kumar, N. C. Gowda, B. J. Ambika, H. N. Veena, B.
Ben Sujitha, and D. R. Ramani, “An efficient breast
cancer detection using machine learning classification
models,” International Journal of Online & Biomedical
Engineering, vol. 20, no. 13, 2024.
I. A. Kandhro, S. Manickam, K. Fatima, M. Uddin, U.
Malik, A. Naz, and A. Dandoush, “Performance
evaluation of E-VGG19 model: Enhancing real-time
skin cancer detection and classification,” Heliyon, vol.
10, no. 10, 2024.
I. A. Kandhro et al.,” Performance evaluation of E-VGG19
model: Enhancing real-time skin cancer detection and
classification,” Heliyon, vol. 10, no. 10, 2024.
K. Hemalatha et al.,” An Enhanced Analysis of Blood
Cancer Prediction Using ANN Sensor-Based Model,”
Eng. Proc., vol. 59, no. 1, p. 65, 2023.
Khalid, A.; Mehmood, A.; Alabrah, A.; Alkhamees, B.F.;
Amin, F.; AlSalman, H.; Choi, G.S. Breast Cancer
Detection and Prevention Using Machine Learning.
Diagnostics 2023, 13, 3113.
M. Adjouadi et al., “Classification of leukemia blood
samples using neural networks,” Annals of Biomedical
Engineering, vol. 38, pp. 1473- 1482, 2010.
M. K. Monika, N. A. Vignesh, C. U. Kumari, M. N. V. S.
S. Kumar, and E. L. Lydia, “Skin cancer detection and
classification using machine learning,” Materials
Today: Proceedings, vol. 33, pp. 4266-4270, 2020.
O. Akinrinade and C. Du,” Skin cancer detection using deep
machine learning techniques,” Intell.-Based Med., vol.
11, p. 100191, 2025.
O. Akinrinade and C. Du, “Skin cancer detection using deep
machine learning techniques,” Intelligence-Based
Medicine, vol. 11, p. 100191, 2025.
P. Chaturvedi, A. Jhamb, M. Vanani, and V. Nemade,
“Prediction and classification of lung cancer using
machine learning techniques,” in IOP Conference
Series: Materials Science and Engineering, vol. 1099,
no. 1, p. 012059, Mar. 2021, IOP Publishing.
R. Raina et al., “A systematic review on acute leukemia
detection using deep learning techniques,” Archives of
Computational Methods in Engineering, vol. 30, no. 1,
pp. 251-270, 2023.
R. Javed, T. Abbas, A. H. Khan, A. Daud, A. Bukhari, and
R. Alharbey, “Deep learning for lungs cancer detection:
a review,” Artificial Intelligence Review, vol. 57, no. 8,
p. 197, 2024.
S. Kabiraj et al.,” Breast cancer risk prediction using
XGBoost and random forest algorithm,” in Proc. 11th
Int. Conf. Comput., Commun. Netw. Technol.
(ICCCNT), Kharagpur, India, Jul. 2020, pp. 1-6, doi:
10.1109/ICCCNT49239.2020.9225433.
S. Agarwal, S. Thakur, and A. Chaudhary,” Prediction of
Lung Can- cer Using Machine Learning Techniques
and their Comparative Anal- ysis,” in Proc. 10th Int.
Conf. Reliability, Infocom Technol. Optim. (Trends
Future Directions) (ICRITO), Noida, India, 2022, pp. 1-
5, doi: 10.1109/ICRITO56286.2022.9965052.
S. P. Maurya, P. S. Sisodia, R. Mishra, and D. P. Singh,
“Performance of machine learning algorithms for lung
cancer prediction: a comparative approach,” Scientific
Reports, vol. 14, no. 1, p. 18562, 2024.
U. K. Lilhore, S. Simaiya, Y. K. Sharma, K. S. Kaswan, K.
B. Rao, V. M. Rao, A. Baliyan, A. Bijalwan, and R.
Alroobaea, “A precise model for skin cancer diagnosis
using hybrid U-Net and improved MobileNet-V3 with
hyperparameters optimization,” Scientific Reports, vol.
14, 2024.
V. Sureshkumar, R. S. N. Prasad, S. Balasubramaniam, D.
Jagannathan, J. Daniel, and S. Dhanasekaran, “Breast
cancer detection and analytics us- ing hybrid CNN and
extreme learning machine,” Journal of Personalized
Medicine, vol. 14, no. 8, p. 792, 2024.