Receiver Operating Curve is graphical
representation of how the model will classify data. At
different threshold levels, true positive rate is plotted
against false positive rate. The AUC-ROC is 0.97%
for this SVM model is shown in figure 3.
Figure 3: ROC curve. Source: Made by author.
6 CONCLUSIONS
The methodology to classify thalassemia with real-
world dataset using SVM technique can assist
medical professional using analysis of CBC indices.
It is clear from accuracy of the model that
practitioners can relies on this model for predicting
thalassemia condition. In future other techniques will
be applied on same dataset for better performance.
REFERENCES
Amendolia, S. R., Cossu, G., Ganadu, M. L., Golosio, B.,
Masala, G. L., & Mura, G. M. (2003). A comparative
study of k-nearest neighbour, support vector machine
and multi-layer perceptron for thalassemia
screening. Chemometrics and Intelligent Laboratory
Systems, 69(1-2), 13-20.
Ferih, K., Elsayed, B., Elshoeibi, A. M., Elsabagh, A. A.,
Elhadary, M., Soliman, A., Abdalgayoom, M., &
Yassin, M. (2023). Applications of Artificial
Intelligence in Thalassemia: A Comprehensive
Review. Diagnostics (Basel, Switzerland), 13(9), 1551.
https://doi.org/10.3390/diagnostics13091551
Fu, Y. K., Liu, H. M., Lee, L. H., Chen, Y. J., Chien, S. H.,
Lin, J. S., ... & Lai, J. Y. (2021). The TVGH-NYCU
Thal-Classifier: Development of a Machine-Learning
Classifier for Differentiating Thalassemia and Non-
Thalassemia Patients. Diagnostics (Basel) 2021; 11 (9):
1725. DOI: https://doi.
org/10.3390/diagnostics11091725. PMID:
https://www. ncbi. nlm. nih. gov/pubmed/34574066.
Guido R, Ferrisi S, Lofaro D, Conforti D. (2024). An
Overview on the Advancements of Support Vector
Machine Models in Healthcare Applications: A
Review. Information, 15(4):235.
https://doi.org/10.3390 /info15040235
Lachover-Roth, I., Peretz, S., Zoabi, H., Harel, E., Livshits,
L., Filon, D., ... & Koren, A. (2024). Support Vector
Machine-Based Formula for Detecting Suspected α
Thalassemia Carriers: A Path toward Universal
Screening. International Journal of Molecular
Sciences, 25(12), 6446.
Laeli, A. R., Rustam, Z., Hartini, S., Maulidina, F., &
Aurelia, J. E. (2020, November). Hyperparameter
optimization on support vector machine using grid
search for classifying thalassemia data. In 2020
International Conference on Decision Aid Sciences and
Application (DASA) (pp. 817-821). IEEE.
Laengsri, V., Shoombuatong, W., Adirojananon, W.,
Nantasenamat, C., Prachayasittikul, V., & Nuchnoi, P.
(2019). ThalPred: a web-based prediction tool for
discriminating thalassemia trait and iron deficiency
anemia. BMC medical informatics and decision
making, 19, 1-14.
Origa R. (2017). β-Thalassemia. Genetics in medicine:
official journal of the American College of Medical
Genetics, 19(6), 609–619.
https://doi.org/10.1038/gim.2016.173
Roth, I. L., Lachover, B., Koren, G., Levin, C., Zalman, L.,
& Koren, A. (2018). Detection of β-thalassemia carriers
by red cell parameters obtained from automatic
counters using mathematical formulas. Mediterranean
journal of hematology and infectious diseases, 10(1).
Rustam, F., Ashraf, I., Jabbar, S. et al. Prediction of β-
Thalassemia carriers using complete blood count
features. Sci Rep 12, 1999(2022). https:// doi.org/
10.1038/s41598-022-22011-8.
Sa'Id, A. A., Rustam, Z., Novkaniza, F., Setiawan, Q. S.,
Maulidina, F., & Wibowo, V. V. P. (2021, September).
Twin support vector machines for thalassemia
classification. In 2021 International Conference on
Innovation and Intelligence for Informatics,
Computing, and Technologies (3ICT) (pp. 160-164).
IEEE.
Weatherall, D. J., & Clegg, J. B. (2001). The Thalassaemia
Syndromes.
Widodo, A., & Yang, B. S. (2007). Support vector machine
in machine condition monitoring and fault
diagnosis. Mechanical systems and signal
processing, 21(6), 2560-2574.
Wirasati, I., Rustam, Z., Aurelia, J. E., Hartini, S., &
Saragih, G. S. (2021). Comparison some of kernel
functions with support vector machines classifier for
thalassemia dataset. Int J Artif Intell ISSN, 2252(8938),
8938.