generalization of the model and allow its greater
utilization in the clinical field.
REFERENCES
C Mallika, J Vanitha, K Kalaivani, S Selvamuthukumaran’
Big Data Analytics-Based Diabetes Prediction Model
for Identifying Internal Factors for Diabetes Mellitus”
2024 3rd Edition of IEEE Delhi Section Flagship
Conference
Deepan, S., et al. "The Role of Big Data Analytics in
Healthcare: Prospect and Ethical Consideration." 2023
10th IEEE Uttar Pradesh Section International
Conference on Electrical, Electronics and Computer
Engineering (UPCON). Vol. 10. IEEE, 2023.
Hashemifar, S., Iriondo, C., Casey, E., & Hejrati, M.
(2022). DeepAD: A Robust Deep Learning Model of
Alzheimer's Disease Progression for Real-World
Clinical Applications. ArXiv preprint arXiv:2203.090
96.
Li, R., Wang, X., Berlowitz, D., Silver, B., Hu, W., Keating,
H., Goodwin, R., Liu, W., Lin, H., & Yu, H. (2023).
Early prediction of Alzheimer's disease leveraging
symptom occurrences from longitudinal electronic
health records of US military veterans. arXiv preprint
arXiv:2307.12369.
Mallika, C., Selvamuthukumaran, S. Hadoop framework:
Analyzes workload predicition of data from cloud
computing ‘IEEE Xplore-2017
Mallika, C., and S. Selvamuthukumaran. "Privacy protected
medical data classification in precision medicine using
an ontology-based support vector machine in the
diabetes management system." Proc Int J Innovative
Technol Exploring Eng 9 (2019): 334À342.
Mallika, C., and S. Selvamuthukumaran. "Technological
perspective on precision medicine in the context of big
data a review." Proceedings of the International
Conference on Cognitive and Intelligent Computing:
ICCIC 2021, Volume 1. Singapore: Springer Nature
Singapore, 2022.
Mallika, C., Selvamuthukumaran, S. A Hybrid Crow
Search and Grey Wolf Optimization Technique for
Enhanced Medical Data Classification in Diabetes
Diagnosis System. Int J Comput Intell Syst 14, 157
(2021)
Mallika, C., and S. Selvamuthukumaran. "Hybrid Online
Model for Predicting Diabetes Mellitus." Intelligent
Automation & Soft Computing 31.3 (2022).
Mao, C., Xu, J., Rasmussen, L., Li, Y., Adekkanattu, P.,
Pacheco, J., Bonakdarpour, B., Vassar, R., Jiang, G.,
Wang, F., Pathak, J., & Luo, Y. (2022). AD-BERT:
Using pre-trained contextualized embeddings to predict
the progression from mild cognitive impairment to
Alzheimer's disease. arXiv preprint arXiv:2212.06042.
Mirabnahrazam, G., Ma, D., Lee, S., Popuri, K., Lee, H.,
Cao, J., Wang, L., Galvin, J.E., Beg, M.F., & the
Alzheimer's Disease Neuroimaging Initiative. (2022).
Machine Learning Based Multimodal Neuroimaging
Genomics Dementia Score for Predicting Future
Conversion to Alzheimer's Disease. arXiv preprint
arXiv:2203.05707
P Umamaheswari, C Mallika, M Vanitha, D Rubidha Devi,
P Dinesh, R ThanujaEarly Detection And Prediction Of
Sleep Apnoea Using Deep Learning Techniques” 2024
International Conference on Advances in Data
Engineering and Intelligent Computing Systems
(ADICS)-2024
Park, J.H., Cho, H.E., Kim, J.H., Wall, M.M., Stern, Y.,
Lim, H., Yoo, S., Kim, H.S., & Cha, J. (2020). Machine
learning prediction of incidence of Alzheimer's disease
using large-scale administrative health data. NPJ
Digital Medicine, 3(1), 46.
Wang, J., Ahn, S., Dalal, T., Zhang, X., Pan, W., Zhang, Q.,
Chen, B., Dodge, H.H., Wang, F., & Zhou, J. (2024).
Augmented Risk Prediction for the Onset of
Alzheimer's Disease from Electronic Health Records
with Large Language Models. arXiv preprint
arXiv:2405.16413.