Kaur, R. and Ranade, S. K. (2023), ‘Improving accuracy of
convolutional neural networkbased skin lesion
segmentation using group normalization and combined
loss function’, International Journal of Information
Technology pp. 1–9.
Kavitha, P & Jayalakshmi, V 2020, Survey of Skin Cancer
Detection using Various Image Processing Techniques,
Proceedings of the Third International Conference on
Intelligent Sustainable Systems, IEEE Xplore Part
Number: CFP20M19-ART; ISBN: 978-1-7281-7089-3,
pp. 1062-1069.
Khan, M. A., Akram, T., Zhang, Y.-D. and Sharif, M.
(2021), ‘Attributes based skin lesion detection and
recognition: A mask rcnn and transfer learning-based
deep learning framework’, Pattern Recognition Letters
143, 58–66.
Khouloud, S., Ahlem, M., Fadel, T. and Amel, S. (2022),
‘W-net and inception residual network for skin lesion
segmentation and classification’, Applied Intelligence
pp. 1–19.
Li, X., Zheng, J., Li, M., Ma, W. and Hu, Y. (2022), ‘One-
shot neural architecture search for fault diagnosis using
vibration signals’, Expert Systems with Applications
190, 116027.
Mehwish Dildar, Shumaila Akram, Muhammad Irfan,
Hikmat Ullah Khan, Muhammad Ramzan, Abdur
Rehman Mahmood, Soliman Ayed Alsaiari, Abdul
Hakeem M Saeed & Mohammed Olaythah Alraddadi
2021, ‘Skin cancer detection: A review using deep
learning techniques’, International Journal of
Environmental Research and Public Health, vol. 18, no.
01, pp. 1-22.
Mohakud, R. and Dash, R. (2022), ‘Designing a grey wolf
optimization based hyperparameter optimized
convolutional neural network classifier for skin cancer
detection’, Journal of King Saud University-Computer
and Information Sciences 34(8), 6280–6291.
Nawaz, M., Mehmood, Z., Nazir, T., Naqvi, R. A., Rehman,
A., Iqbal, M. and Saba, T. (2022), ‘Skin cancer
detection from dermoscopic images using deep learning
and fuzzy k-means clustering’, Microscopy research
and technique 85(1), 339–351.
Ragab, M., Choudhry, H., Al-Rabia, M. W., Binyamin, S.
S., Aldarmahi, A. A. and Mansour, R. F. (2022), ‘Early
and accurate detection of melanoma skin cancer using
hybrid level set approach’, Frontiers in Physiology 13,
2536.
Ragumadhavan, R, Aravind Britto, KR & Vimala, R 2022,
‘Melanoma skin cancer detection using wavelet
transform and local ternary pattern’, Journal of Medical
Imaging and Health Informatics, vol. 12, no. 1, pp. 15-
19, ISSN: 2156-7018,
Sangers, T, Reeder, S, Vander Vet, S, Jhingoer, S,
Mooyaart, A, Siegel, DM & Wakkee, M 2022,
‘Validation of a market-approved artificial intelligence
mobile health app for skin cancer screening: A prosp-
ective multicenter diagnostic accuracy study’,
Dermatology: Skin CancerResearch Article, vol. 11,
no. 8, pp. 1-8.
Wu, Y. P., Parsons, B., Jo, Y., Chipman, J., Haaland, B.,
Nagelhout, E. S., Carrington, J., Wankier, A. P., Brady,
H. and Grossman, D. (2022), ‘Outdoor activities and
sunburn among urban and rural families in a western
region of the us: Implications for skin cancer preventi-
on’, Preventive Medicine Reports 29, 101914.
Zafar, K., Gilani, S. O., Waris, A., Ahmed, A., Jamil, M.,
Khan, M. N. and Sohail Kashif, A. (2020), ‘Skin lesion
segmentation from dermoscopic images using convol-
utional neural network’, Sensors 20(6), 1601.