G. Peters, R. Weber, “DCC: a framework for dynamic
granular clustering”, Granul. Comput. (2016) 1:1–11,
DOI 10.1007/s41066-015-0012-z
I. V. Serban, C. Sankar, M. Germain, S. Zhang, Z. Lin, S.
Subramanian, T. Kim, M. Pieper, S. Chandar, N. R.
Ke,S. Rajeshwar, A. d. Brebisson, J. M. R. Sotelo, D.
Suhubdy, V. Michalski, A. Nguyen, J. Pineau, Y.
Bengio, “A Deep Reinforcement Learning Chatbot”,
arXiv:1709.02349v2 [cs.CL] 5 Nov 2017
J. Wan, D. Wang, S. C.H. Hoi, P. Wu, J. Zhu, Y. Zhang, J.
Li, “Deep Learning for Content-Based Image Retrieval:
A Comprehensive Study”, Proceedings of the ACM
International Conference on Multimedia: November 3-
7, 2014, Orlando. pp. 157-166
J. Jayasree, Sri M. A. Mathi, S. Malini, E. Bavithra, Dr. P.
Boobalan, “Product Ranking System in E-Commerce
Website for Validation using Sentimental Analysis”,
International Journal of Science Technology &
Engineering, Volume 3, Issue 09, March 2017
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understanding.
In North American Chapter of the Association for
Computational Linguistics.
Jalal Omer Atoum. 2020. Cyberbullying detection through
sentiment analysis. 2020 International Conference on
Computational Science and Computational Intelligence
(CSCI), pages 292–297.
Jalal Omer Atoum. 2021. Cyberbullying detection neural
networks using sentiment analysis. 2021 International
Conference on Computational Science and
Computational Intelligence (CSCI), pages 158–164.
M. Rajan, T. S. Rinku, V. Bhojane, “Information Retrieval
in Malayalam Using Natural Language Processing”,
International Journal of Scientific & Engineering
Research, Volume 5, Issue 6, June-2014
M. M. Kampert, J. J. Meulman, J. H. Friedman, “rCOSA:
A Software Package for Clustering Objects on Subsets
of Attributes”, Journal of Classification 34:514-547
(2017)
M. M. Mironczuk, J. Protasiewicz, “A recent overview of
the state-of-the-art elements of text classification”
,Expert Systems With Applications, 106, 2018, 36-54
Michael Agbaje and Oreoluwa Afolabi. 2024. Neural
network-based cyber-bullying and cyber-aggression
detection using twitter(x) text. Revue d’Intelligence
Artificielle.
Nhan Cach Dang, María N. Moreno García, and Fernando
de la Prieta. 2020. Sentiment analysis based on deep
learning: A comparative study. ArXiv,abs/2006.03541.
S. Zhang, C. Zhang, Q. Yang, “Data Preparation For Data
Mining”, Applied Artificial Intelligence, 17:375– 381,
2003, Copyright # 2003 Taylor & Francis, 0883-
9514/03$12.00+.00,DOI:10.1080/0883951039021926
“DataMiningOverview”,https://www.tutorialspoint.co
m/data_mining/dm_overvie w.htm
S. Khemka, “Why Data Mining? Editor’s Point of View”,
digital valley, Vol.1, No 4, July 2018
Stefano Baccianella, Andrea Esuli, Fabrizio Sebastiani, et
al. 2010. Sentiwordnet 3.0: an enhanced lexical
resource for sentiment analysis and opinion mining. In
Lrec, volume 10, pages 2200–2204. Valletta.
T. Wuest, D. Weimer, C. Irgens, K. D. Thoben, “Machine
learning in manufacturing: advantages, challenges, and
applications”, Production & Manufacturing Research:
An Open Access Journal, 2016, VOL. 4, NO. 1, 23–45
U. Fayyad, G. P. Shapiro, P. Smyth, “From Data Mining to
Knowledge Discovery in Databases”, AI Magazine
Volume 17 Number 3 (1996) (© AAAI)
V. Gupta, G. S. Lehal, “A Survey of Text Mining
Techniques and Applications”, Journal of Emerging
Technologies in Web Intelligence, Vol. 1, No. 1, Aug
2009
W. Medhat, A. Hassan, H. Korashy, “Sentiment analysis
algorithms and applications: A survey”, Ain Shams
Engineering Journal 2014, 5, 1093-1113
Y. Roh, G. Heo, S. E. Whang, “A Survey on Data
Collection for Machine Learning”,arXiv:1811.03402v2
[cs.LG] 12 Aug 2019